TM 820 716 ED 222 561

AUTHOR

Hambleton, Ronald K.; And Others

TITLE

Applications of Item Response Models to NAEP

Mathematics Exercise Results.

INSTITUTION

Education Commission of the States, Denver, Colo. National Assessment of Educational Progress.;

Massachusetts Univ., Amherst. Laboratory of

Psychometric and Evaluative Research.

SPONS AGENCY

National Inst. of Education (ED), Washington, DC.

PUB DATE

15 Feb 82

GRANT NOTE

NIE-G-80-0003 238p.; Appendix B is marginally legible due to small

print; For related documents, see TM 820 707-712.

EDRS PRICE DESCRIPTORS MF01/PC10 Plus Postage.

*Data Analysis; *Educational Assessment; Elementary

Secondary Education; Equated Scores; Evaluation

Methods; *Goodness of Fit; Item Analysis; Item Banks;

*Latent Trait Theory; Mathematics Achievement;

National Surveys; *Quantitative Tests; Test

Construction; Test Items; Test Validity

IDENTIFIERS

National Assessment of Educational Progress; *NIE ECS

NAEP Item Development Project; Second Mathematics

Assessment (1978)

ABSTRACT

Item response model applications to National Assessment of Educational Progress (NAEP) data specifically aimed at the uses of item response models in mathematics item banking are discussed. Approaches for addressing goodness of fit were organized into three categories: Checks on model assumptions, expected features, and additional model predictions. Within the categories, several new methods were also advanced and several older methods which were not in common use for determining item response model-data fit were described. Many of these methods were then used to determine the fit of the one- and three-parameter models to six NAEP mathematics booklets (three booklets for 9-year-olds and three booklets for 13-year-olds) in the 1977-78 assessment. There were some inconsistent findings but it did appear that the three-parameter model provided an excellent fit to the data sets whereas the one-parameter model did not. When a bank of content valid and technically sound test items is available, and goodness of fit studies reveal a high match between the chosen item response model and the test data, item response models may be useful to NAEP in test development, detection of biased items, score reporting, equating test forms and levels, item banking, and other applications as well. Primary type of information provided by the report: Results (Secondary Analysis). (Author/PN)

Reproductions supplied by EDRS are the best that can be made from the original document.

Applications of Item Response Models to NAEP Mathematics Exercise Results 1

Ronald K. Hambleton
-Principal Investigator-

Linda Murray Robert Simon -Research AssistantsU.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

- X This document has been reproduced asreceived from the person or organization originating it.
 - Minor changes have been made to improve reproduction quality.
- Points of view or opinions stated in this document do not necessarily represent official NIE position or policy.

University of Massachusetts
Laboratory of Psychometric and Evaluative Research
Hills South, Room 152
Amherst, MA 01003

- February 15, 1982 -

¹The work upon which this publication is based was performed pursuant to ECS Contract No. 02-81-20319 which was issued under a jointly sponsored project of the Educational Commission of the States (ECS) and the National Institute of Education (NIE). It does not, however, necessily reflect the views of ECS or NIE.

Applications of Item Response Models to NAEP Mathematics Exercise Results

Ronald K. Hambleton, Principal Investigator University of Massachusetts, Amherst

Abstract

In view of the technical advances and applications of item response models around the country, it is reasonable to expect ECS to consider the potential of item response models for use within its assessment programs. Among the areas to which the models could be applied are:

- 1. test building (item analysis, item bias, and item selection),
- equating test forms,
- 3. measuring achievement growth,
- 4. linking NAEP exercises to other national, state, and district tests and test score norms.

But, the advantages derived from the applications of item response models cannot be achieved if the fit between the item response model of interest and NAEP exercises is less than adequate. Unfortunately, relatively little work has been done on the problem of determining the goodness of fit between an item response model and a test data set. Also, no one has looked at the fit between any of the item response models and NAEP mathematics exercises.

The research study had two principal objectives:

- To organize and evaluate many of the available approaches for addressing the fit between an item response model and a data set.
- 2. To fit the one- and three-parameter logistic models to several NAEP mathematics exercise booklets, and evaluate and compare the results.

Approaches for addressing goodness of fit were organized into three categories: Checks on model assumptions, expected features, and additional model predictions. Within the categories, several new methods were also advanced and several older methods which were not in common use for determining item response model-data fit were described. Many of these methods were then used to determine the fit of the one- and three-parameter models to six NAEP mathematics booklets (three booklets for nine year olds and three booklets for thirteen year olds) in the 1977-78 assessment. There were some inconsistent findings but it did appear that the three-parameter model provided an excellent fit to the data sets whereas the one-parameter model did not. Recommendations for conducting future goodness of fit investigations were offered in the final section of the report.

Table of Contents

A bst	ract	i
1.0	Introduction	1
	1.1 Statement of Problems	1 5
	Concepts	6
2.0	Goodness of Fit Approaches	L 3
~	2.2 Statistical Tests of Significance	13 18 27 29
3.0	Analysis of NAEP Mathematics Exercises	3. 8
	3.2 Description of NAEP Mathematics Exercises	38 38 41 59 65 93
4.0	Conclusions	75
	4.1 Implications of Findings for NAEP	75
5.0	References	78
Appe	ndix A - Item Response Model Goodness of Fit Studies	
Appe	ndix B - Item Response Model Residual Analysis Program. (Program Listing and Sample Output)	

1.0 Introduction

1.1 Statement of Problems

Item response theory, or latent trait theory as it has sometimes been called, is the most popular topic for research at the present time among measurement specialists. There are numerous published research studies and conference presentations, and plentiful and diverse applications of the theory (for example, see Hambleton, Swaminathan, Cook, Eignor, & Gifford, 1978; Lord, 1980). At least six books on the topic are in preparation; Applied Psychological Measurement will devote a special issue to the topic in 1982; and the Educational Research Institute of British Columbia will publish a special monograph in 1982 on promising item response model applications.

Presently, item response theory (IRT) is used by nearly all of the large test publishers, and many state departments of education and industrial and professional organizations to construct tests, to study item bias, to equate tests, and to report test score information. The many applications appear to be so successful that discussions of IRT have shifted from consideration of their advantages and disadvantages compared to classical test models to a consideration of topics such as model selection, item and ability parameter estimation, and methods for determining goodness of fit. Nevertheless, it would be incorrect to convey the impression that issues and technology associated with item response theory are fully developed and without controversy. Still, considerable progress has been made since the seminal papers by Lord (1952, 1953).

In view of the technical advances and applications of item response models (IRMs) it is reasonable to expect that the Educational Commission for the States (ECS) will consider in the near future the potential of IRMs for use within its assessment programs. Among the areas to which the models could be applied are:

- 1. in test building (item analysis, item bias, and item selection);
- 2. in equating test forms;
- 3. in reporting test scores;
- 4. in measuring achievement growth (on various groups of examinees, or on particular test items);
- 5. in assessing test score reliability;
- 6. in linking NAEP exercises to other national, state, and district test score norms.

It must be recognized however that any advantages derived from the applications of IRMs cannot be achieved if the fit between an IRM and a test data set of interest is less than adequate. Unfortunately, to date, relatively little research has addressed the problem of determining the goodness of fit between an IRM and a test data set of interest. What work has been done involves statistical tests, but these tests cannot be used as the sole determiner of model-data fit because of their dependence on examinee sample size. When sample sizes are large (as they will be with NAEP test data), nearly all departures between a model and a data set (even those where the practical significance of the difference is minimal) will lead to rejection of the null hypothesis of model-data fit. With small sample sizes even big differences may not be detected via statistical methods because of the low level of statistical

power. ECS and others interested in applying IRMs could benefit from a set of recommendations for addressing goodness-of-fit studies.

Unfortunately, the extant literature has not been compiled or organized, nor, to our knowledge, has much of the literature been critically evaluated.

Another problem is that the fit between any of the IRMs and NAEP mathematics exercises has not been studied. Of special interest in this study are goodness-of-fit results pertaining to several of the more promising applications of IRMs with the NAEP exercises. One of these applications involves creating an item bank with released items and then "linking" all of the items at a given age level to a common ability scale. Non-NAEP items can also be calibrated and added to the bank. In theory, statistical descriptors of items (Titem parameters) that are obtained from item response model analyses do not depend upon the choice of examinee groups used in estimating them, and expected ability estimates for examinees do not depend upon the particular choice of items selected from the bank. Such a system would permit, for example, schools to measure academic growth even though different test items are used at each test administration. Also, it would be possible to predict how well groups of examinees would have done on selected NAEP mathematics exercises (and comparisons can be made to the reported NAEP item norms) from their performance on other test items included in the item bank. Why would anyone wish to administer a different set of test items from those items } which were normed? One reason is that teachers may wish to administer particular items to examinees because of their diagnostic value. A second reason is that with students who may be expected to do rather poorly

or well on a test, better estimates of their abilities can be obtained when test items are selected to match their expected ability levels (Hambleton, 1979). There are other uses of item banks as well (see, for example, Hambleton et al., 1978). Again, however, these desirable outcomes will only be obtained if there is a more than adequate fit for an item response model to the NAEP mathematics exercise data. Of special interest is the invariance of item parameter estimates. For example, when items function differently for males and females; blacks, hispanics, and whites; and students from computationally-oriented and noncomputationally-oriented math programs; IRM assumptions are violated and desired outcomes are not achieved. It is important to determine to what extent invariance of item parameters is obtained and over which sub-🔛 populations of examinees because the findings from item invariance studies have a direct bearing on the utility of IRMs in item banking. when item statistics are not invariant, the usefulness of the item statistics, norms, etc., associated with an item bank are limited.

In summary, it would appear that there are several reasons for ECS to consider the utility of IRMs in their test development, analysis, and score reporting work. However, some preliminary work on approaches for assessing goodness of fit must be done first. With the approaches in hand, a variety of goodness-of-fit studies can be conducted on the NAEP mathematics exercises. Finally, at this time the advantages and disadvantages of the one- and three-parameter logistic models in relation to the NAEP exercises is unknown. Some work in the area would help ECS select the proper model, if they decide to use IRMs in one or more aspects of their testing methods and procedures.

1.2 Objectives

The research study had two principal objectives:

- To organize and evaluate many of the available approaches for addressing the fit between an item response model and a data set.
- 2. To fit the one- and three-parameter logistic models to several

 NAEP mathematics exercise booklets, and evaluate and compare

 the results.

The potential of item response theory for solving a variety of NAEP & testing and measurement problems appears to be substantial. However, this promise or potential is not guaranteed by simply processing test results through an available computer program to perform item response model analyses. Also, it cannot be assumed that because so many other data sets have been fit by item response models that the fit to NAEP exercise data is The fact is that many of the applications described in the literature and especially the large set of AERA, NCME, and NAEP conference papers have failed to adequately address the goodness-of-fit issue and so the extent of model-data fit is unknown. Also, because of the national importance and visibility of NAEP, it is essential to carefully evaluate any proposed changes or additions to NAEP's approaches for building exercises and reporting and using the test information. Presently, NAEP is very successful, highly visible, and important. There-. fore, there is no reason to take risks in test development and score reporting. In this research project, ECS is provided with a framework and methods for addressing the goodness-of-fit question. And, the work in this area should impact on other groups who are interested in addressing

model-data fit questions. Second, ECS is provided with information 'pertaining to the fit between several NAEP mathematics exercise booklets and the one- and three-parameter logistic test models.

1.3 Item Response Models, Assumptions, Busic Concepts1

For many years now the classical test model has been useful to test developers and test score users. The model is based on "weak assumptions" and therefore the model can be applied to many testing problems (Lord & Novick, 1968). But, in spite of the wide acceptance of the classical test model, it has several important limitations. One limitation is that the two most common classical descriptors of test items, item difficulty and item discrimination, vary as a function of the average ability and the range of ability found in the particular sample of examinees for which they are computed. The usefulness of these item statistics in building tests is limited therefore to groups similar to those from which the examinee sample was drawn. Sample-dependent item statistics are a serious handicap for test developers.

Another shortcoming is that examinee test scores depend upon the particular selection of items included in a test: If distinct samples of test items are drawn from a pool of items all designed to measure the same knowledge and skills, and these item samples differ in difficulty, the test scores an examinee can expect to earn on these samples will also differ. With item-dependent ability estimates, comparisons among examinees are limited to situations where examinees have been administered identical (or "parallel") sets of test items.

 $^{^{\}rm l}$ The material in this section of the report was edited from a paper by Hambleton (1979).

A third shortcoming of the classical test model is that it assumes that the errors of measurement are the same for all examinees. At is not uncommon to observe, however, that some examinees perform tasks more consistently than others and that consistency varies with ability. Needed are test models which can provide information about the precision of test scores and that are free to vary from one test score to another.

Because of the shortcomings of the classical test model, psychometricians have been investigating and developing more appropriate test models. Considerable attention is being directed currently toward the field of <u>latent trait theory</u>, sometimes referred to as <u>item response theory</u> or item characteristic curve theory (Lord, 1980).

In a few words, item response theory postulates that (1) underlying examinee performance on a test is a single ability or trait, and (2) the relationship between examinee performance on each item and the ability measured by the test can be described by a monotonically increasing curve. The curve is called an item characteristic curve and it provides the probability of examinees at various ability levels answering an item correctly. In Figure 1.3.1 below, two item characteristic curves are shown.

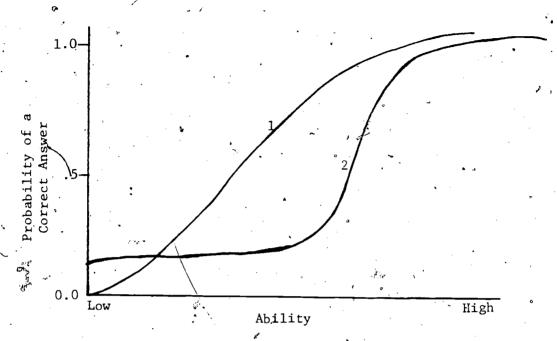


Figure 1.3.1. Two item characteristic curves

It is clear from the figure that the probability of a correct answer depends on the level of examinee ability. Examinees with more ability have higher probabilities for giving correct answers to items than lower ability examinees. Item characteristic curves are typically described by one-, two-, and three-parameter curves. The three item parameters are called item difficulty, item discrimination, and item pseu o-chance level. Items which are shifted to the right end of the ability scale are more difficult than those shifted to the left end of the ability scale. It is clear from Figure 1.3.1 then that item 2 is more difficult than item 1. The slope of an item characteristic curve describes an item's discriminating power. In Figure 1.3.1, therefore, item 2 is more discriminating than item 1. Finally, the probability of a very low ability examinee answering an item correctly is the item's pseudo-chance level. With

item 1 in the figure, the probability is 0. With item 2 the probability is somewhat higher.

Most item response models, and all of the models which are presently popular, require the assumption that the test items are homogeneous in the sense that they measure a single ability or trait. In addition, it is common to assume that the item characteristic curves are described by one-, two-, or three-parameters, and the corresponding models are referred to as one-, two-, and three parameter models, respectively. With the three-parameter model, items can vary in their difficulty, discrimination level, and pseudo-chance level. With the two-parameter model, the pseudo-chance level parameter is 0 for all items. With the one-parameter model, not only does the pseudo-chance level parameter have a value of 0 for all items, but all items have a common level of discrimination.

When the assumptions of item response theory can be met in the data sets to which it is applied, at least a reasonable degree, what is obtained are (1) examinee ability estimates in the pool of items from which the items are drawn that do not depend upon the particular sample of items selected for the test, (2) item descriptors or statistics (difficulty, discrimination, pseudo-chance level) that do not depend upon the particular sample of examinees from the population of examinees for whom the earlier mentioned item pool is suitable, and (3) a statistic is provided indicating the precision with which each examinee's ability is estimated. Of course, the extent to which the three advantages are gained in an application of an item response model depends upon the closeness of the "fit" between a set of data and the model. If the fit is poor,

the three desirable features either will not be obtained or obtained in a low degree (Lord, 1980).

Item response models are based on a set of assumptions about the test data. Two of these assumptions will be discussed here: Dimensionality, and the mathematical form chosen for the item characteristic curves.

With respect to dimensionality, it is common to assume that only one ability is necessary to "explain," or "account" for examinee test performance. Item response models in which a single latent ability is presumed sufficient to explain or account for examinee performance are referred to as unidimensional models. The assumption that a set of test items is unidimensional is commonly made because scores on tests that measure only one trait are relatively easy to interpret. There exists no well accepted method for studying the unidimensionality of a set of test items. Factor analysis is the most common of the psychometric approaches used to address the dimensionality question (Hambleton et al.,

An item characteristic curve (ICC) is a mathematical function that relates examinee probability of success on an item to the ability measured by the set of items contained in the test. $P_i(\theta)$ designates the probability of a correct response to item i by an examinee with ability level θ . The main difference to be found among currently popular latent trait models is in the mathematical form of the ICCs.

Birnbaum (1968) proposed ICCs which take the form of two-parameter logistic functions:

$$P_{i}(\theta) = \frac{e^{Da_{i}(\theta-b_{i})}}{1+e^{Da_{i}(\theta-b_{i})}}, \quad (i=1, 2, ..., n). \quad [1.3.1]$$

14

In equation [1.3.1], $P_i(\theta)$ is the probability that an examinee with ability θ answers item i correctly, and b_i and a_i are parameters of item i. The parameter, b_i , is referred to as <u>item difficulty</u>. It is the point on the ability scale such that examinees who possess that amount of ability have a 50% chance of answering an item correctly. The parameter, a_i , called <u>item discrimination</u>, is proportional to the slope of $P_i(\theta)$ at the point $\theta = b_i$. The constant D is a scaling factor set equal to 1.7.

A three-parameter model can be constructed from the two-parameter model by adding a third parameter, denoted $c_{\bf i}$. The form of the three-parameter logistic curve is

$$P_{i}(\theta) = c_{i} + (1-c_{i}) \frac{e^{Da_{i}(\theta-b_{i})}}{1+e^{Da_{i}(\theta-b_{i})}}$$
, (i=1, 2, ..., n). [1.3.2]

The parameter c_i is the lower asymptote of the ICC and gives the probability of low ability examinees correctly answering the item.

The one-parameter model (sometimes called the "Rasch model") is a special case of the three-parameter logistic model in which guessing behavior is minimal (c_i =0), all items are assumed to have equal discriminating power, and items vary only in terms of difficulty. Therefore,

$$P_{i}(\theta) = \frac{e^{\theta - b_{i}}}{1 + e^{\theta - b_{i}}}$$
 [1.3.3]

The scale on which ability estimates are located is arbitrary. The scale is chosen so that ICCs of the form specified by the model under investigation fit as closely as possible to the available test data. An assumption is made that the correct metric is the one which maximizes predictions between unobservable characteristics (ability and item parameters) and observable data (examinee item responses). Since both

scale, it is usual to set the mean and standard deviation of one of the two variables to 0 and 1, respectively. In fact, any linear transformation of ability scale units is permissible and predictions from the model will not be influenced so long as the item discrimination parameters are revised accordingly. This means, for example, that if an agency wanted scores from an instrument on a scale with mean ability = 100 and standard deviation = 10, then, ability scores and item difficulties must be transformed using the linear equations

$$\theta_a^* = 10 \theta_a + 100$$

$$b_i^* = 10 b_i + 100 ,$$

and the values of $a_{\mathbf{i}}$ must be transformed by the equation

$$a_{i}^{*} = \frac{1}{10} a_{i}$$
.

This last equation is determined so that

$$a_i^* (\theta_a^* - b_i^*) = a_i (\theta_a - b_i)$$
.

If this were not the case, the predictions for the model would be influenced by a change in the ability scale (Hambleton, 1980).

2.0 Goodness of Fit Approaches 1

2.1 Overview

Item response models offer a number of advantages for test score interpretations and reporting of NAEP results but the advantages will only be obtained in practice when there is a close match between the model selected for use and the test data.

From a review of the relevant literature it appears that the determination of how well-a-model-accounts for a set of test data can be addressed in at least three ways:

- a. Determine if the test data satisfy the assumptions of the test model of interest.
- b. Determine if the expected advantages derived from the use of the item response model (for example, invariant item and ability estimates) are obtained.
- c. Determine the closeness of the fit between predictions and observable outcomes (for example, test score distributions) utilizing model parameter estimates and the test data.

Strictly speaking, tests of model assumptions are not tests of goodness of fit but because of their centrol role in model selection and use in the interpretation of goodness of fit tests we have included them first in a series of desirable goodness of fit investigations.

Promising practical approaches for addressing each category above will be addressed in subsequent sections. First, however, the inappropriateness of placing substantial emphasis on results from statistical tests will be explained.

¹Small sections of this chapter are from Hambleton et al (1978) and Hambleton (1980).

2.2 Statistical Tests of Significance

Statistical tests of goodness of fit of various item response models have been given by many authors (Andersen, 1973; Bock, 1972; Mead, 1976; Wright, Mead, & Draba, 1976; Wright & Panchapakesan, 1969; Wright & Stone, 1979). The procedure advocated by Wright and Panchapakesan (1969) for testing the fit of the one-parameter model is one of the most commonly used. It essentially involves examining the quantity f_{ij} where f_{ij} represents the frequency of examinees at the ith ability level answering the jth item correctly. Then, the quantity y_{ij} , where

$$y_{ij} = \{f_{ij} - E(f_{ij})\}/\{Var_s f_{ij}\}\}$$

is distributed normally with zero mean and unit variance. Since f_{ij} has a binomial distribution with parameter p_{ij} , the probability of a correct response is given by $\theta_i^*/(\theta_i^* + b_j^*)$ for the one-parameter model, and r_i , the number of examinees in the score group. Hence, $E(f_{ij}) = r_i p_{ij}$, and $Var_i(f_{ij}) = r_i p_{ij}(1-p_{ij})$. Thus a measure of the goodness of fit, χ^2 , of the model can be defined as

$$\chi^{2} = \begin{array}{ccc} n-1 & n \\ \Sigma & \Sigma & \Sigma \\ i=1 & j=1 \end{array} y_{ij}^{2}$$

The quantity, χ^2 , defined above has been assumed by Wright and his colleagues to have a χ^2 distribution with degrees of freedom (n-1) (n-2) since the total number of observations in the matrix $F=\{f_{ij}\}$ is n(n-1), and the number of parameters estimated is 2(n-1). Wright and Panchapakesan (1969) also defined a goodness-of-fit measure for individual items as

$$\chi_{\mathbf{j}}^{2} = \sum_{\mathbf{i}=1}^{\mathbf{n}-1} y_{\mathbf{i}\mathbf{j}}^{2}$$

where χ^2 is assumed to be distributed as χ^2 with degrees of freedom, (n-2). This method for determining the goodness of fit can also be extended to the two-land three-parameter item response models although it has not been extended to date.

There are several problems associated with the chi-square tests of fit discussed above. The χ^2 test has dubious validity when any one of the $E(f_{\underline{i}\underline{j}})$ terms, $\underline{i} = 1, 2, \ldots, \underline{n} - 1; \underline{j} = 1, 2, \ldots, \underline{n}$, have values less than one. This follows from the fact that when any of the $E(f_{ij})$. terms are less than one, the deviates y_{ij} , 1 - 1, 2, ..., n - 1; j = 1, 2, ..., n, are not normally distributed and a χ^2 distribution is obtained only by summing the squares of normal deviates. Another problem encountered in using the χ^2 test is that it is sensitive to sample size. If enough observations are taken, the null hypothesis that the model fits the data will always be rejected using the χ^2 test. Divgi (1981) and Wollenberg (1980, 1982a, 1982b) have also demonstrated that the Wright-Panchapakesan goodness-of-fit statistic is not distributed as a χ^2 variable and the associated degrees of freedom have been assumed to be higher than they actually are. Clearly there are substantial reasons for not relying on the Wright-Panchapakesan statistic because of the role sample size plays in its interpretation and because of questions concerning the appropriate sampling distribution and degrees of freedom.

Alternately, Wright, Mead, and Draba (1976) and Mead (1976) have suggested a method of test of fit for the one-parameter model which involves conducting an analysis of variance on the variation remaining in the data after removing the effect of the fitted model. This procedure allows not only a determination of the general fit of the data to the model but also enables the investigator to pin-point guessing as the major

factor contributing to the misfit. This procedure for testing goodness of fit of the one parameter model involves computing residuals in the data after removing the effect of the fitted model. These residuals are plotted against $(\theta_1^-b_g)$. According to the model, the plot should be represented by a horizontal line through the origin. For guessing, the residuals follow the horizontal line until the guessing becomes important. When this happens the residuals are positive since persons are doing better than expected and in that region have a negative trend. If practice or speed is involved, the items which are affected display negative residuals with a negative trend line over the entire range of ability. Bias for a particular group may be detected by plotting the residuals separately for the two groups. It is generally found that the residuals have a negative trend for the unfavored group and a positive trend for the favored group.

When maximum likelihood estimates of the parameters are obtained, likelihood ratio tests can be obtained for hypotheses of interest (Waller, 1981). Likelihood ratio tests involve evaluating the ratio, λ , of the maximum values of the likelihood function under the hypothesis of interest to the maximum value of the likelihood function under the alternate hypothesis. If the number of observations is large, $-2 \log \lambda$ is known to have a chi-square distribution with degrees of freedom given by the difference in the number of parameters estimated under the alternate and null hypotheses. An advantage possessed by likelihood ratio tests over the other tests discussed earlier is apparent. Employing the likelihood ratio criterion, it is possible to assess the fit of a particular latent trait model against an alternative.

Anderson (1973) and Bock and Liebermann (1970) have obtained likelihood ratio tests for assessing the fit of the Rasch model and the two-parameter normal ogive model respectively. Andersen (1973) obtains a conditional likelihood ratio test for the Rasch model based on the within score group estimates and the overall estimates of item difficulties. He shows further that -2 times the logarithm of this ratio is distributed as χ^2 with degrees of freedom, (n-1) (n-2). Based on the work of Bock and Liebermann (1970), likelihood ratio tests can be obtained for testing the fit of the two-parameter normal ogive model. It should be pointed out that these authors have obtained both conditional and unconditional estimates of the para-For the likelihood ratio test, it would be more appropriate if the unconditional model is used since with this model ability parameters are not estimated, and hence the likelihood ratio criterian can be expected to have the chi-square distribution. This procedure can be extended to compare the fits of one model against another (Andersen, 1973).

The major problem with this approach is that the test criteria are distributed as chi-square only asymptotically. But, as was mentioned earlier, when large samples are used to accommodate this fact, the chi-square value may become significant owing to the large sample size!

2.3 Checking Model Assumptions

Item response models are based on strong assumptions which will not be completely met by any set of test data (Lord & Novick, 1968). There is evidence that the models are robust to some departures but the extent of robustness of the models has not been firmly established (Hambleton et al., 1978). Given doubts of the robustness of the models, one might be tempted to simply fit the most general model since it will be based on the least restrictive assumptions. Unfortunately, the more general models are multi-dimensional (i.e., assume that more than one latent variable is required to account for examinee test performance), and they are complex and do not appear ready for wide-scale use. Alternately, it has been suggested that the three-parameter logistic model, the most general of the unidimensional models in common use, be adopted. theory, the three-parameter model should result in better fits than either the one- or two-parameter models. But, there are three problems with this course of action: (1) more computer-time is required to conduct the analyses, (2) somewhat larger samples of examinees and items are required to obtain satisfactory item and ability estimates, and (3) the additional item parameters (item discrimination and pseudo-chance levels) complicate the use of the model for practitioners. Of course, in spite of the problems, and with important testing programs such as NAEP and a highly trained staff, the three-parameter model may still be preferred.

• Model selection can be aided by an investigation of four principal assumptions of several of the item response models: unidimensionality, equal discrimination indices, minimal guessing, and non-speeded test administrations. Promising approaching for studying these assumptions are summarized in Figure 2.3.1 and will be briefly considered next.

Figure 2.3.1 Approaches for Conducting Goodness of Fit Investigations

Checking Model Assumptions

- 1. Unidimensionality (Applies to Nearly All Item Response Models)
 - Kuder-Richardson Formula 20 (Common Approach But Not Acceptable[®]Statistic is Influenced By Test Score Variability and Test Length).
 - Plot of Eigenvalues (From Largest to Smallest) of the Inter-Item Correlation Matrix Look for a Dominant First Factor, and a High Ratio of the First to the Second Eigenvalue (Reckase, 1979).
 - Comparison of Two Plots of Eigenvalues the One Described Above and One of Eigenvalues for an Inter-Item Correlation Matrix of Random Data (Same Sample Size, and Number of Variables, Random Data Normally Distributed) (Horn, Psychometrika, 1965).
 - Plot of Content-Based Versus Total-Test Based Item Parameter Estimates (Bejar, JEM, 1980).
 - Analysis of Residuals After Fitting a One Factor Model to the Inter-Item Covariance Matrix (McDonald, BJMSP, 1980).
- 2. Equal Discrimination Indices (Applies to the One-Parameter Logistic Model)
 - Analysis of Variability of Item-Test Score Correlations (For Example, Point-Biserial and Biserial Correlations).
 - Identification of Percent of Item-Test Score Correlations Falling Outside Some Acceptable Range (For Example, the Average Item-Test Score Correlation ± .15).
- Minimal Guessing (Applies to the One- and Two-Parameter Logistic Model)
 - Investigation of Item-Test Score Plots (Baker, JEM, 1964, 1965).
 - Consideration of the Performance of Low-Ability Examinees (Selected with the Use of Test Results, or Instructor Judgments) on the Most Difficult Test Items.
 - Consideration of Item Format and Test Time Limits (For Example, Consider the Number of Item Distractors, and Whether or Not the Test Was Speeded).
- 4. Non-speeded (Power) Test Administration (Applies to Nearly All Item Response Models).
 - Comparison of Variance of the Number of Items Unattempted to the Variance of the Number of Items Answered Wrongly (Gulliksén, 1950).
 - Investigation of the Relationship Between Scores on a Test With the Specified Time Limit and With an Unlimited Time Limit (Cronbach and Warrington, 1951).

• Investigation of (A) Percent of Examinees Completing the Test, (B)
Percent of Examinees Completing 75% of the Test, and (C) Number of
Items Completed by 80% of the Examinees (ETS Method, See Donlon, 1978).

Checking Expected Model Features

- 1. Invariance of Item Parameter Estimates (Applies to All Models)
 - Comparison of Item Parameter Estimates Obtained in Two or More Sub-groups of the P pulation for Whom the Test is Intended (For Example, Males and Females; Blacks, Whites, and Hispanics; Instructional Groups; High and Low Performers on the Test or Other Criterion Measure, Geographic Regions). Normally Comparisons Are Made of the Item Difficulty Estimates and Presented in Graphical Form (Scattergrams). Random Splits of the Population Into Sub-groups "The Same Size Provide a Basis for Obtaining Plots Which Can Serve as a Baseline for Interpreting the Plots of Principal Interest. Graphical Displays of Distributions of Standardized Differences in Item Parameter Estimates Can Be Studied. Distributions Ought to Have a Mean of Zero and a Standard Deviation of One (For Example, Wright, 1968; Lord, 1980; Hambleton and Swaminathan, 1982).
- 2. Invariance of Ability Parameter Estimates (Applies to All Models)
 - Comparison of Ability Estimates Obtained in Two or More Item Samples From the Item Pool of Interest. Choose Item Samples Which Have Special Significance Such As Relatively Hard Versus Relatively Easy Samples, and Subsets Reflecting Different Content Categories Within the Total Item Pool. Again, Graphical Displays and Investigation of the Distribution of Ability Differences Are Revealing.

Checking Model Predictions of Actual (and Simulated) Test Results

- Investigation of Residuals and Standardized Residuals of Model-Test Data Fits at the Item and Person Levels. Various Statistics are Available to Summarize the Fit Information. Graphical Displays of Data Can Be Revealing.
- Comparison of Item Characteristic Curves Estimated in Substantially Different Ways (For Example, Lord, <u>Psychometrika</u>, 1970).
- Plot of Test Scores and Ability Estimates (Lord, Psychometrika, 1974).
- Plots of True and Estimated Item and Ability Parameters (For Example, Swaminathan, 1981; Hambleton and Cook, 1982). These Studies Are Carried Out With Computer Simulation Methods.
- Comparison of Observed and Predicted Score Distributions. Various Statistics (Chi-Square, For Example) and Graphical Methods Can Be Used to Report Results. Cross-Validation Procedures Should Be Used, Especially If Sample Sizes Are Small (Hambleton and Traub, BJMSP, 1973).
- Investigation of Hypotheses Concerning Practice Effects, Test Speededness, Cheating, Boredom, Item Format Effects, Item Order, etc.

Unidimensionality

The assumption of a unidimensional latent space is a common one for test constructors, since they usually desire to construct unidimensional tests so as to enhance the interpretability of a set of test scores (Lumsden, 1976). What does it mean to say that a test is unidimensional? Suppose a test consisting of n items is intended for use in r subpopulations of examinees (e.g., several ethnic groups). Consider next the conditional distributions of test scores at a particular ability level for the r subpopulations. These conditional distributions for the r subpopulations will be identical if the test is unidimensional. If the conditional distributions vary across the r subpopulations, it can only be because the test is measuring something other than the single ability. Hence, the test cannot be unidimensional.

It is possible for a test to be unidimensional within one population of examinees and not unidimensional in another. Consider a test with a heavy cultural loading. This test could appear to be unidimensional for all populations with the same cultural background. However, when administered to populations with varied cultural backgrounds, it may in fact have more than a single dimension underlying the test score.

Examples of this situation are seen when the factor structure of a particular set of test items varies from one cultural group to another.

Lumsden (1961) provided an excellent review of methods for constructing unidimensional tests. He concluded that the method of factor analysis held the most promise. Fifteen years later he reaffirmed his conviction (Lumsden, 1976). Essentially, Lumsden recommends that a

basis of empirical evidence and a priori grounds. Such an item selection procedure will increase the likelihood that a unidimensional set of test items within the pool of items can be found. If test items are not preselected, the pool may be too heterogeneous for the unidimensional set of items in the item pool to emerge. In Lumsden's method, a factor analysis is performed and items not measuring the dominant factor obtained in the factor solution are removed. The remaining items are factor analyzed, and again, "deviant" items are removed. The process is repeated until a satisfactory solution is obtained. Convergence is most likely when the initial item pool is carefully selected to include only items that appear to be measuring a common trait. Lumsden proposed that the ratio of first factor variance to second factor variance be used as an "index of unidimensionality."

Factor analysis can also be used to check the reasonableness of the assumption of unidimensionality with a set of test items (Hambleton & Traub, 1973). However, the approach is not without problems. For example, much has been written about the merits of using tetrachoric correlations or phi correlations (McDonald & Ahlawat, 1974). The common belief is that using phi correlations will lead to a factor solution with too many factors, some of them "difficulty factors" found because of the range of item difficulties among the items in the pool. McDonald and Ahlawat (1974) concluded that "difficulty factors" are unlikely if the range of item difficulties is not extreme and the items are not too highly discriminating.

Tetrachoric correlations have one attractive feature. A sufficient condition for the unidimensionality of a set of items is that the matrix of tetrachoric item intercorrelations has only one common factor (Lord & Novick, 1968). On the negative side, the condition is not necessary. Tetrachoric correlations are awkward to calculate (the formula is complex and requires some numerical integration), and, in addition, do not necessarily yield a correlation matrix that is positive definite, a problem when factor analysis is attempted.

Kuder-Richardson Formula 20 has on occasion been recommended and/or used to address the dimensionality of a set of test items. But Green, Lissitz, and Mulaik (1977) have noted that the value of KR-20 depends on test length and group heterogeneity and therefore the statistic provides misleading information about unidimensionality.

A somewhat more promising method involves considering the plots of eigenvalues for test item intercorrelation matrices and looking for the "breaks" in the plots to determine the number of "significant" underlying factors. To assist in locating a "break" forn (1965) suggested that the plot of interest be compared to a plot of eigenvalues obtaining from an item intercorrelation matrix of the same size and where inter-item correlations are obtained by generating random variables from normal distributions. The same number of examinees as used in the correlation matrix of interest is simulated.

Another promising approach, in part because it is not based on the analysis of correlation coefficients, was suggested by Bejar (1980):

- Split test items on an apriori basis (i.e., content considerations).
 For example, isolate a subset of test items which appear to be tapping a different ability from the remaining test items.
- 2. For items in the subset, obtain item parameter estimates twice: once by including the test items in item calibration for the total test and a second time by calibrating only the items in the subset.

3.. Compare the two sets of item parameter estimates by preparing plot (see Figure 2.3.2).

Unless the item parameter estimates (apart from sampling error) are equal, the probability for passing items for fixed ability levels will differ. This is not acceptable because it implies that performance on items depends on which items are included in the test which contradicts the unidimensionality assumption.


Finally, McDonald (1980a, 1980b) and Hattie (1981) have suggested the use of non-linear factor analysis and the analysis of residuals as a promising approach. The approach seems promising because test items are related to one another in a non-linear way anyway, and the analysis of residuals, after fitting a one-factor solution seems substantially more revealing and insightful than conducting significance tests on the amount of variance accounted for.

Equal Discrimination Indices

This assumption is made with the one-parameter model. There appear to be only descriptive methods available for investigating departures from this model assumption. A rough check of its viability is accomplished by comparing the similarity of item point-biserial or biserial correlations. The range (or the standard deviation) of the discrimination indices should be small if the assumption is to be viable. Wright and his colleagues have, on occasion, looked at the residuals remaining after fitting a one-parameter model and attempted to study variation in item discrimination indices but they have written little on their methods.

Figure 2.3.2 Plot of content-based and total-test based item parameter estimates.

Guessing

There appears to be no direct way to determine if examinees guess the answers to items in a test. Two methods have been considered (1) non-linear item-test score regression lines, and (2) the performance of low test score examinees on the hardest test items. With respect to the first method, for each test item, the proportion of correct answers for each test score group (small test score groups can be combined to improve the accuracy of results) are plotted. Guessing is assumed to be operating when test performance for the low performing score groups exceeds zero. For method two, the performance of the low-scoring examinees on the hardest test questions if of central concern. Neither method however is without faults. The results will be misleading if the test items are relatively easy for the low ability group, and/or if the low ability group is only relatively low in ability in relation to other examinees in the population of examinees for whom the test is intended but now low ability in any absolute sense (i.e., very low scorers on the test).

Speededness of the Test

Little attention is given to this seldom stated assumption of many item response models. When it operates it introduces an additional factor influencing test performance. It can be identified by a factor analytic study. Interestingly, with some of the new ability estimation methods (Lord, 1980), the failure of examinees to complete a test can be handled so that the speed-redness factor does not "contaminate" ability score estimates. The appropriateness of the assumption in relation to a set of test results can be checked by determining the number of examinees who fail to finish a test and the number of items they fail to complete. The ideal situation occurs when examinees have sufficient time to attempt each question in a test.

Donlon (1978) provided an extensive review of methods for determining the speededness of tests. Three of the most promising are cited in

Figure 2.3.1. Perhaps discussion of only one here will suffice. It involves obtaining an estimate of the correlation between scores obtained under power and speed conditions and correcting the correlation for attenuation due to the unreliability associated with the power and speed scores:

$$\rho(T_p, T_s) = \frac{\rho(X_p, X_s)}{\sqrt{\rho(X_p, X_p^{\dagger})} \sqrt{\rho(X_s, X_s^{\dagger})}}$$

The speededness index proposed by Cronbach and Warrington (1951) is

Speededness Index =
$$1 - \rho^2(T_s, T_p)$$
.

The index is obtained in practice by administered parallel-forms of the test of interest under speed and power conditions to the same group of examinees.

2.4 Checking Model Features

When item response models fit test data sets, three advantages are obtained:

- 1. Examinee ability estimates are obtained on the same ability scale and can be compared even though examinees may have taken different sets of test items from the pool of items measuring the ability of interest.
- 2. Item statistics are obtained which do not depend on the sample of examinees used in the calibration of test items.
- 3. An indication of the precision of ability estimates at each point on the ability scale is obtained.

It is to obtain the advantages that item response models are often chosen as the mode of analysis. However, whether or not these features are obtained in any application depends on many factors — model—data fit, test length, precision of the item parameter estimates, and so on.

Through some fairly straightforward methods, these features can be studied and their presence in a given situation determined.

The first one can be addressed, for example, by administering examinees two or more samples of test items which vary widely in difficulty (Wright, 1968). In some instances, items can be administered in a single test and two scores for each examinee obtained: the scores are based on the easier and harder halves of the test. To determine if there is substantial difference in test difficulty, the distributions of scores on the two halves of the test can be compared. Pairs of ability estimates obtained from the two halves of the test for each examinee are plotted on a graph. The bivariate plot of ability estimates should be linear because expected ability scores for examinees do not depend upon the choice of test items when the item response model under investigation, fits the test data. Some scatter of points about a best fitting line, however, is to be expected because of measurement error. When a linear relationship is not obtained, one or more of the underlying assumptions of the item response model under investigation are being violated by the test data set. Factors such as test characteristics, test lengths, precision of item statistics, and so on can also be studied to determine their influence.

The second feature is studied in essentially the same way as the first. The difference is that extreme ability groups are formed and item parameter estimates in the two samples are compared. Wright (1968) and Lord (1980) have carried out extensive studies in this area. Again, if the test data are fit by the item response model under investigation, there should be a linear relationship between item parameter estimates from the two examinee samples, even if the samples differ in ability, race, or sex (Lord & Novick, 1968). The comparison is carried out for each item parameter in the model of interest. With respect to NAEP exercises it seems especially important to compare item parameter estimates

derived from (say) black and white examinee groups. This check would be a stiff one but a linear relationship must still be obtained or it must be said that the item response model does not fit the test data for one or two of the groups.

Perhaps the most serious weakness of the approaches described above (and these are the only ones found in the literature) is that there is no baseline data available for interpreting the plots. How is one to know whether the amount of scatter is appropriate, assuming model-data fit? Alternately, statistical tests are performed to study the differences between (say) b values obtained in two samples. But, as long as there is at least a small difference in the true parameter values in the samples, statistically significant differences will be obtained when sample sizes are large. Thus, statistically significant differences may be observed even when the practical differences are very small.

The third feature is a harder one to address. Perhaps it is best answered via simulation methods. According to the theory, if a test is "long enough," the conditional distribution of ability estimates at each ability level is normal (mean = ability; sd = $1/\sqrt{\text{information}}$). It appears that a test must include about 20 items (Samejima, 1977).

2.5. Checking Additional Model Predictions

Several approaches for checking model predictions were introduced in Figure 2.3:1. One of the most promising approaches for addressing model-data fit involves the use of residual analyses. An item response model is chosen; item and ability parameter estimates are obtained; and predictions of the performance of various ability groups on the items on the test are made, assuming the validity of the chosen model. Comparisons of the predicted results with the actual results are made.

By comparing the average item performance levels of various ability groups to the performance levels predicted by an estimated item characteristic curve, a measure of the fit between the estimated item characteristic curve and the observed data can be obtained. This process, of course, can and is repeated for each item in a test. In Figure 2.5.1, a plot of the residuals (difference between the observed data and an estimated item characteristic curve) across ability groups for four items are reported along with likely explanations for the results. The average item performance of each ability group is represented by the symbol "x" in the figure. If, for example, 25 of 75 examinees in the lowest ability group answered an item correctly, an "x" would be placed at a height of .33 above the average ability score in the ability group where the performance was obtained. (The width of each ability group should be wide enough to contain a reasonable number of examinees.) With items "a", "b", and "c" in Figure 2.5.1, there is substantial evidence of a misfit between the available test data and the estimated item characteristic curves (Hambleton, 1980). It is surprising to note, given their apparent usefulness, that residuals have not received more attention from item response model researchers.

Lord (1970, 1974) has advanced several approaches for addressing model-data fit. In 1970, Lord compared the shape of ICC curves estimated by different methods. In one method he specified the curves to be three-parameter logistic. In the other method no mathematical form of the ICCs was specified. Since the two methods gave very similar results (see Figure 2.5.2) he argued that it was reasonable to impose the mathematical form of three-parameter logistic curves on his data. Presumably Lord's study can be replicated on other data sets as well although his second

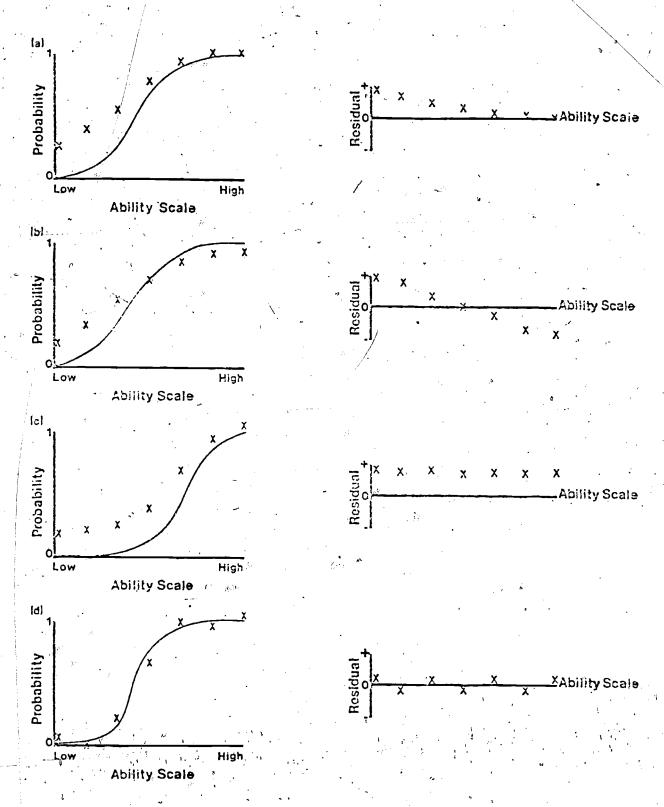


Figure 2.5.1. Analysis of residuals. Possible Explanation:
(a) failure to account for "guessing", (b) failure to account for "item discrimination", (c) biased item, and (d) item fitted by the particular model.

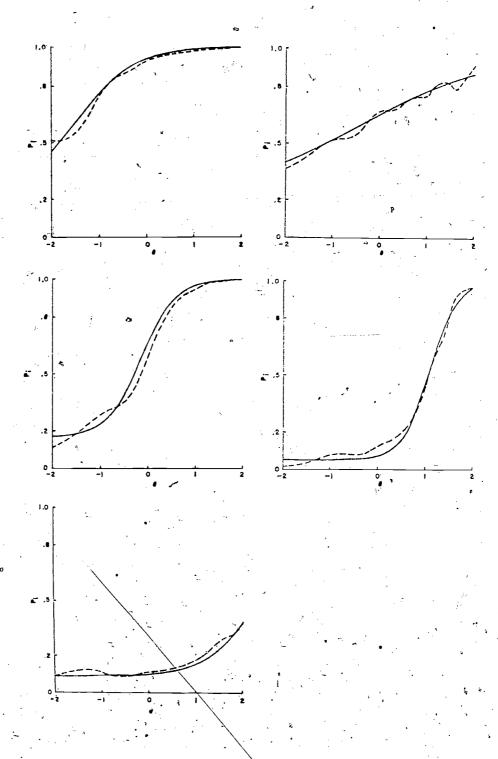


Figure 2.5.2. Five item characteristic curves estimated by two different methods (reproduced from Lord, 1970).

method required very large examinee samples. In a second study, Lord
(1974) was able to assess, to some extent, the suitability of ability
sestimates by comparing them to raw scores. The relationship should be
high but not perfect.

Simulation studies have been found to be of considerable value in learning more about item response models, and how they compare in different applications (e.g., Hambleton, 1982a, 1982b; Hambleton & Cook, 1982; Ree, 1979). It is possible to simulate data with known properties and see how well the models recover the true parameters. Hambleton and Cook (1982) found, for example, when concerned with estimating ability scores for ranking, description, or decisions, that the one-, two-, and three-parameter models provided highly comparable results except for low ability examinees. Swaminathan (1981) conducted a study of Bayesian estimators and used a comparison of true and estimated difficulty values to evaluate these procedures (see Figure 2.5.3).

Several researchers (for example, Hambleton & Traub, 1973; Ross, 1966) have studied the appropriateness of different mathematical forms of item characteristic curves by using them, in a comparative way, to predict test score distributions (See Figures 2.5.4 and 2.5.5). Hambleton and Traub (1973) obtained item parameter estimates for the one- and two-parameter models from three aptitude tests. Assuming a normal ability distribution and using test characteristic curves obtained from both the one- and two-parameter logistic models, they obtained predicted score distributions for each of the three aptitude tests. A χ^2 goodness of fit index was used to compare actual test score distributions with predicted test score distributions from each test model. Judgment can then be used to determine the suitability of any given test model and the desirability of one model

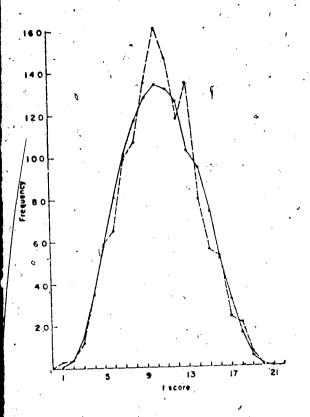


Figure 2.5.4. Observed (*) and expected (o) distributions for OSAT-Verbal using the two-parameter logistic model.

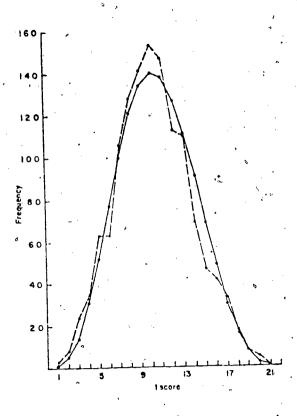


Figure 2.5.5. Observed (•) and expected (o) distributions for OSAT-Verbal using the one-parameter logistic model.

over another. Hambleton and Traub (1973) based their predictions upon a normal ability distribution assumption however it is neither desirable nor necessary to make such an assumption to obtain predicted score distributions.

Finally, it is reasonable and desirable to generate testable hypotheses concerning model—data fit. Hypotheses might be generated because they seem interesting (e.g., Are item calibrations the same for examinees receiving substantially different types of instruction?) or because questions may have arisen concerning the validity of the chosen item response model and testing procedure(e.g., What effect does the context in which an item is pilot—tested have on the associated item parameter estimates?) On this latter point, see for example, Yen (1980). Surprisingly, there is relatively little attention beyond the attention associated with category 1 and 2 for testing hypotheses.

2.6 Summary

Our review of relevant literature associated with conducting goodness of fit studies revealed a substantial number of approaches. From our perspective, however, there appeared to be too much emphasis on statistical tests for determining goodness of fit. As an alternative, the use of judgment in interpreting misfit statistics and other model-data comparisons for more than one model seems desirable. Perhaps the statistical approach can be replaced by the use of graphical methods, replications, cross validation techniques, study of residuals, baseline results to aid in interpretations, study of practical consequences of misfit, and so on.

With respect to testing model assumptions, unidimensionality is clearly the most important assumption to satisfy. Many tests of unidimensionality are available but those which are independent of correlations (Bejar) and/or incorporate the analysis of residuals (McDonald) seem most useful. In category two, there is a definite shortage of ideas and techniques. Presently, plots of (say) item parameter estimates obtained in two groups are compared but without the aid of any "baseline plots." Or, statistical tests are used to compare the two sets of item parameter estimates but such tests are less than ideal for reasons offered in section 2.2. Several new techniques seem possible and these will be introduced in the next chapter. In the third category, a number of very promising approaches have been described in the literature but they have received little or no attention from researchers. Perhaps the problem is due to a shortage of computer programs to carry out necessary analyses or to an over reliance on statistical tests. In any case the problem is likely to be overcome in the near future and we will focus our attention in the next chapter on several of the more promising approaches in this category.

3.0 Analysis of NAEP Mathematics Exercises

3.1 Introduction

In this section of the report (1) the NAEP mathematics exercises will be briefly described, (2) the particular mathematics exercises which were chosen for analysis will be described, and (3) the results from many item response model NAEP math data fit investigations introduced in section 2 will be presented and discussed.

3.2 Description of NAEP Mathematics Exercises

In the 1977-78 NAEP assessment of mathematics skills of 9, 13, and 17 year olds, approximately 650 test items (called "exercises" by NAEP) at each age level were used. Available test items at a given age level were randomly assigned to one of ten forms. Each test form was administered to a carefully chosen sample of (approximately) 2500° examinees. Elaborate sampling plans were designed and carried out to insure that each form was administered to a nationally representative sample of examinees.

Item statistics play only a minor part in NAEP mathematics test development. Test items are included in test forms if they measure what national panels of mathematics specialists believe should be included in the NAEP testing program. Content considerations are dominant in the item selection process. In this respect test development parallels the construction of criterion-referenced tests (Popham, 1980; Hambleton, 1982c). Tables 3.2.1 and 3.2.2 provide information on the distribution of item content across six content categories for four test booklets (two booklets at the 9 and 13 year old levels). Math calculations, story problems, and geometry appear to be the most frequently occurring types of test items.

Table 3.2.1

Content Classification Summary of NAEP Math Booklet No. 1 and 2 Test Items (9 Year Olds, 1977-78)

Booklet 1 Booklet 2	
	•
Story Problems Story Problems	
Money 1 Money General 5 General	3
General 5 General Logic, Probability, Logic, Probability,	2
Permutation and 4 Permutation and	7
Combination Combination	· —
Total <u>10</u> Total	12
	•
<u>Geometry</u>	
Story 0 Story	0.1 ns 9.
Definition/Operations 9 Definition/Operation Figure Interpretations, Figure Interpretation	1S 9
Manipulation 5 Manipulation	· <u>.</u> .
Total 14 Total	10
	•
<u>Definition</u>	
Total . $\underline{1}$ Total	<u>16</u>
Calculation Calculation	
General 15 General	25
Algebra 8 Algebra	· <u>1</u>
Total <u>23</u> Total	<u>26</u>
<u>Measurement</u> <u>Measurement</u>	
English 3 English	1
Metric $\underline{3}$ Metric	4
Total <u>6</u> Total	<u>5</u>
Graphs and Figures Graphs and Figures	
Total <u>5</u> Total	<u>6</u>

Table 3.2.2

Content Classification Summary of NAEP

Math Booklet No. 1 and 2 Test Items

(13 Year Olds, 1977-78)

Booklet 1		Booklet 2	
Story Problems		Story Problems	
Money General Logic, Probability, Jermutation and Combination	3 6 5	Money General Logic, Probability, Permutation and Combination	2 9 4
Total	14	Total	15
<u>Geometry</u>		. Geometry	* **
Story I efinition/Operation I igure Interpretation Manipulation		Story Definition/Operations Figure Interpretation, Manipulation	1 7 28
Total	13	Total	10
' <u>)efinițion</u> Total	<u>9</u>	Definition Total	7
Calculation	5	Calculation	
General Algebra	, 14 1	General Algebra	17 5
Total	<u>15</u>	Total	22
Measurement		Measurement	٠.
English Metric	3 2	English Metric	1 ° 0
Total , ,	<u>5</u>	Total	1
Graphs and Figures Total	· <u>1</u>	Graphs and Figures Total	<u>7</u>

About 50% of the test items in the 1977-78 assessment were included on the previous NAEP-mathematics assessment in 1971-72. In addition, on the 1977-78 assessment some test items were included in the mathematics test booklets at all three age levels. While in our research investigation "linking" test items across age levels to a common scale was of no interest, such a task could have been accomplished with the aid of these common test items (Lord, 1980; Wright & Stone, 1979). However, at a given age level, there were no common test items. Had we been interested in "linking" test items at a given age level to a common scale, the task could have been achieved easily because of the plausible assumption that test forms were administered to equivalent ability groups (Lord, 1980; Hambleton & Swaminathan, 1982).

Test items in the NAEP mathematics assessment were of two types: multiple-choice, and open-ended. Tables 3.2.3, 3.2.4, 3.2.5, and 3.2.6 provide information on the item formats and content categories of test items in NAEP math booklets 1 and 2 for 9 and 13 year olds. Among the multiple-choice test items it was also interesting to note that the number of answer choices varied. Information reported in the four tables provided the basis for several important analyses described in section 3.6.

3.3 Description of Data

Six NAEP mathematics test booklets from the 1977-78 assessment were selected for analysis:

9 Year Olds

Booklet No. 1, 65 test items Booklet No. 2, 75 test items Booklet No. 3, 68 test items

Table 3.2.3

Format and Content Classification of NAEP
Math Booklet No. 1 Test Items
(9 Year Olds, 1977-78)

	Item No.	Ansv	ver Format ¹	Category	•
. '	1/102A	1	MC.	Definition	٠
	2/102B	· ·	MC (6 options)	Definition	
	3/103A	ì	MC '	Story problem - money	
	4/104A	1	MC (6 options) &	Geometry - definition	-
¥k,	5/104B	·	MC (6 options)	Geometry - definition	
	6/105A	i i	MC	Geometry - figure manipulation	
	7/106A		ЭE	Geometry - operations	,
	8/106B		DE	Geometry - operations	
	9/106C		MC	Geometry - operations	1
	10/107A	1	MC (6 options)	Measurement - English	
,	11/108A	•	OE .	Calculation	į.
	12/108B		OE .	Calculation	
	13/108C	(OE .	Calculation	•
	14/108D		OE ·	Calculation	•
	15/108E		OE	Calculation	J.,
	16/108F	€	OE	Calculation	
. ```	17/109A		MC	Story problem - logic	
•	18/110A		OE .	Story problem - general	
	19/111A	y is had related to	MC	Geometry - definition	•
	20/112A	•	OE	Calculation	
	21/112B		OE "	Calculation *	
	22/113A°		MC ·	Measurement - English	t;
	23/114A		MC (6 options)	Story problem - general	
	.24/115A	•	OE	Calculation - algebra	•
	25/115B		OE	Calculation - algebra	
	26/115C	•	OE	Calculation - algebra	•
	27/115D	, ;	OE	Calculation - algebra 🌦	
ر د مو	. 28/115E		OE	Calculation - algebra.	4
•	29/115F	· .	OE .	Calculation - algebra	
	30/115G	7	OE .	Calculation - algebra	

 $^{^{1}}$ MC Items have 5 answer choices (including "I don't know") unless otherwise noted.

Table 3.2.3 (continued)

i	Item No.	* * * * * * * * * * * * * * * * * * *	Answer Format	Category
	31/116A		MC (6 options)	Graphs and Figures
	32/117A	e .	MC	Definition
	33/1178	\ ************************************	MC	Definition
1	34/118A		MC (4 options)	Measurement - metric
	35/119A		MC (6 options)	Graphs and Figures
PN.	36/120A		OE	Calculation
	37/120B	•	OE	Calculation
•	38/121A		MC (10 options)	Definition
,	39/122A		MC (6 options)	Story problem -general
	40/123A		MC	Calculation
•	41/124A	•	OE	Story problem - general
•	42/125A		OE	。Calculation
	43/125B		OE	Calculation
	44/125C		OE	Calculation
	45/1 <u>2</u> 6A		OE	Measurement - metric
•	46/127A	*	MC (4 options)	Calculation - algebra
	47/128A		MC (4 options)	Measurement - metric
` •	48/129A		MC	Graphs and Figures
	'49/129B	.*	МС	Graphs and Figures
	50/130A		MC (4 options)	Story problem - logic
;	51/130в	•	MC (4 options)	Story problem - logic
	52/131A	. *	MC (7 options)	Geometry - figure manipulation, interpretation
	53/131B	•	MC (7 options)	Geometry - figure manipulation, interpretation
€ 5	54/131C		MC (7 options)	Geometry - figure manipulation, interpretation
	55/132A .		OE	Graphs and Figures
	· 56/133A		OE	Story problem - general
	.57/134A	•	MC (6 options)	Geometry - definition
;	58/134B		MC (6 options)	Geometry - definition
	59/134C	de .	MC (6 options)	Geometry - definition
	60/135A	in the second se	OE	Story problem - probability

-44Table 3.2.3 (continued)

Item No.	Answer Format	Category
61/136A	OE	Measurement - English
62/137A	OE	Definition
63/138A	OE	Calculation
64/139A	МС	Geometry - figure manipulation, interpretation
• 65/140A	МС	Definition

Table 3.2.4

Format and Content Classification of NAEP Math Booklet No. 2 Test Items (9 Year Olds, 1977-78)

Item No	•	Answer	Format 1	Category
1/202A		MC	- • • • • • • • • • • • • • • • • • • •	Definition
2/ 2 02 B	· · · · · · · · · · · · · · · · · · ·	MC		Definition
3/203A	•	OE	٠.	Calculation
4/203B		OE		Calculation
5/203C		OE	r [*]	Calculation
. 6/203D		OE		Calculation
7/203E		OE		Calculation
8/203F		OE		Calculation
9/204A		· OE		Calculation
10/204B	•	OE		Calculation
11/204C		OE		Calculation
12/204D	•	OE	•	Calculation
13/205A		MC ((6 options)	Geometry - operations
14/206A		MC ((6 options)	Story problem - money
15/207A		MC	•	Graphs and Figures
16/207B	•	MC	4 - 4	Graphs and Figures
17/208A	,	OE		Calculation
. 18/208B	•	OE		{Calculation
19/208C	•	OE		Calculation
·		MC .		Story problem - combinations
21/210A	· · · · · · · · · · · · · · · · · · ·	MC	(8 options)	Graphs and Figures
22/210B	. •	MC	(6 options)	Graphs and Figures
23/2100	* .	MC	(9 options)	Graphs and Figures
24/211A	•	MC ((4 options)	Definition
25/211B		. MC	(4 options)	Definition
26/2110	ı	MC	(4 options)	Definition
27 <u>/</u> 211D		MC	(4 options)	f Definition
28/211E	· ·	MC	(4 options)	Definition
29/212A	,	" MC	(4 options)	Measurement - metric
30/212B		MĊ		Measurement - metric

MC Items have 5 answer choices (including "I don't know") unless otherwise noted.

Table 3.2.4 (continued)

Item No.	Answer Format	Category
31/213A	OE	Calculation - algebra
32/214A	OE .	Story problem - logic
33/215A	OE.	Definition
34/215B	OE	Definition
35/215C	OE	Definition
36/216A	MC (6 options)	Geometry - definition
37/216B	MC (6 options)	Geometry - definition
38/216C	MC (6 options)	Geometry - definition
39/217A	MC	Story problem - money
40/218A	OE /	Calculation
41/218B	OE	Calculation
42/218C	OE	Calculation
43/218D	OE +	Calculation
44/218E	OE	Calculation
45/218F	OE	Calculation
46/219A	MC	Geometry - operations
47/220 A	OE 3	Calculation
48/220B	OE	Calculation
49/220C	OE	Calculation
50/221A.	MC	Geometry - definition
51/22 2 A	MC	Measurement - metric
52/223۸	MC	Definition
53/224A	MC .	Definition
54/224B	MC	Definition
55/225A	MC	Story problem - logic
56/225B	MC	Story problem - logic
57/225C	MC	Story problem - logic
58/226A	МС	Story problem - general
59/226B	МС	Story problem - general:
60/227 A	MC	Calculation

-47Table 3.2.4 (continued)

Item No.	Answer Format	" Category
61/22 8 A	MC	Geometry - definition
62/228B	MC	Geometry - definition
63/229A	MC	Definition
-6,4/22 9B	MC	Definition
65/229C	MC	Definition
66/230A	OE	Calculation
67/231A	OE	Story problem - money
68/232A	OE .	Geometry - operations
69/233A	MC v	Story problem - logic
70/234A	OE	Story problem - probability .
71/235A	OE	Geometry - figure manipulation, interpretation
72/236A	OE	Calculation
73/237A	OE	Measurement - English
74/238A	OE	Graphs and Figures
75\\239A	MC	Measurement - metric

Table 3.2.5

Format and Content Classification of NAEP Math Booklet

No. 1 Test Items

(13 Year Olds, 1977-78)

	- Annatoring Control			
.Item No.		nswer For	mat 1	Category
1/102A		OE	en e	Story problem - money
2/10 3 A	• •	MC	•	Definitions •
3/103B	•	MC		Definitions
4/104A		OE		Measurement - English
5/105A		MC		Calculation
6/106A		MC	ı	Geometry - definition, operations
7/106B 💆 🚟		MC		Geometry - definition, operations
8/106C		MC ,		Geometry - definition, operations
9/10 7 A		MC	•	Story problem - logic
10/108A		ME .		Measurement - metric
11/109A	Ŋ	- OE	,	Calculation - subtraction
12/109В		OE		Calculation - subtraction
<u>1</u> /3/109 C	•	OE	2. The second se	Caluclation - subtraction
14/109D	*	OE		Calculation - subtraction
15/109E		OE	•••	Calculation - subtraction
16/109F		OE		Calculation - subtraction
17/110A	•	_MC (4	options)	Measurement - metric
18/111A		OE `		Story problem - general
19/111B	•	OE		Calculation
20/112٨		OE		Calculation
21/112B		OE	v	Calculation
22/113A		MC (1	0 options)	Definition
23/114A		мс	, ,	Definition
24/114B	,	MC	•	Definition
25/115A		OE ,		Story problem - money
26/116A	and the second	MC 🏂		Geometry - definitions, operations
27/116B		MC		Geometry - definitions, operations
28/11 7 A	1.	OE	•	Geometry - definitions
29/118A		OE		Measurement - English
30/119A	4 A.	MC (7	options)	Story problems - general
				· ·

¹MC items have 5 answer choices (including "I don't know") unless otherwise noted.

Table 3.2.5 (continued)

Item No.	Answer Format	Category
31/120A	МС	Geometry - figure manipulation, interpretation
32/120B	MC .	Story problem - general .
33/121A	MC (6 options)	Story problem - general .
34/122A	MC •	Geometry - definitions
35/122B	MC	Geometry - definitions
36/123A	MC	Story problem - money
37/124A	MC (6 options)	Geometry - story problem
38/125A	MC	Definitions
39/126A	MC	Definitions
40/127A	MC ,	Story problem - combinations
'41/128A	MC	Definitions
42/129A	MC (6 options)	Geometry - definitions, operations
43/130A	MC 💆	Geometry - figure manipulation
44/131 <u>A</u>	OE	Calculation "
45/131B	· OE ,	Calculation
46/132A	MC	Story problem - general
47/133A	MC	G o metry - story problem `
48/134A	MC (6 options)	Definitions
49/135A	0 E	Calculations - algebra
50/136A	MC	Story problem - general
51/137A	MC (6 options)	Story problem - probability
52/137B	MC (6 options) .	Story problem - probability
53/138A	MC (6 options)	Geometry - figure manipulation
54/139A	. OE	Calculation
55/140A	OE	Graphs and figures
56/141A	MC	·Story problem - logic
57/142A	OE ,	Measurement - English
58/143A	OE .	Calculation

Table 3.2.6

Format and Content Classification of NAEP Math Booklet No. 2 Test Items (13 Year Olds, 1977-78)

Item No.		·Answer Format1	Category
1/202A		OE	Calculation - algebra
2/203A	. •	OE ·	Calculation
3/204A	•	ŎE ,	Calculation
4/205A	•	MC/	Story problem - logic -
5/20 6 A		MC \	Definitions
6/20 7 A		OE	Graphs and Figures
7/208A	•	OE	Measurement - English
8/209A	¢ .	OE	Story problem - general
9/210A		OE	Calculation ·
10/210 B	•	OE v	Calculation
11/210C	•	° OE	Calculation
12/210D	1	OE	Calculation
13/211A		MC (6 options)	Geometry - definitions
14/212A	•	MC	Calculation - algebra 🦠
15/213A		MC (6 options)	Geometry - story problem
16/2146		OE	Calculation
17/214B		OE	Calculation
18/214C	• /	* OE	Calculation
19/214D	- "	OE	Calculation
20/214E		OE ,	Calculation
21/214F		, OE	Calculation
22/215A •	r e	MC.(6 options)	Geometry - definitions
23/216A		OE	Calculation
24/216в		OE	Calculation
25/216C	51	OE	Calculation
26/217A	· .	MC `	[₹] Geometry - definition
27/217B		MC .	Geometry - definition
28/218A		oe oe	Story problem - general
29/219A		° MC	Story problem - money .
30/220A		OE	Story problem - probability

 $^{^{1}}$ MC items have 5 answer choices (including "I don't know") unless otherwise noted.

Table 3.2.6 (continued)

Item No.		Answer Format	Category
31/221A	٠.	MC	Definition
32/222A		MC (4 options)	Definition
33/222B		MC (4 options)	Definition
34/223A	σ	MC (6 options)	Story problem - general
35/224A	·	OE	Story problem - money
36/225A		MC (6 options)	Graphs and figures
37/225B		MC (7 options)	Graphs and figures
38/225C	•	MC (6 options)	Graphs and figures
39/226A		OE ·	Calculation - algebra
40/227A		MC	Story problem - general
41/228A		OE	Calculation - algebra
42/228B		OE	Calculation - algebra
. 43/229A		MC (4 options)	Story problem - general
44/230A		МС	Geometry - figure manipulation, interpretation
45/231A		MC (6 options)	Story problem - permutation and combination
46/232A	•	MC	Story problem - general
47/232B		MC	Story problem - general
48/233A		OE	Definition
49 \ 233B		OE	Definition
50/233C	•	OE "	Definition
51/234A		MC (6 options)	Geometry - definitions
52/234B		MC (6 options)	Geometry - definitions
53/235A		OE	Story problem - general
54/236A	0 0	MC	Geometry - figure manipulation, interpretation
55/237A		MC (6 options)	Geometry definitions, operation
56/238A	•	OE	Story problem - general
.57/239A		· MC (6 options)	Story problem - probability
58/240A	. · · · · · · · ·	MC (6 options)	Graphs and figures
59/2 40B	•	MC (6 options)	Graphs and figures
60/240C		MC (6/options)	Graphs and figures
61/241A	o	° OE	Calculation - algebra
62/241B	1	OE . 5:	Calculation - algebra

13 Year Olds

Booklet No. 1, 58 test items Booklet No. 2, 62 test items Booklet No. 3, 73 test items

In some of the computer printouts which follow the six booklets above are designated 109, 209, 309, 113, 213, 313, respectively. There was no particular pattern to our choice of data sets for the various analyses. For some analyses all six data sets were used, for others, only one or two were used.

Tables 3.3.1 and 3.3.2 contain the one- and three-parameter logistic model parameter estimates for items in the six NAEP math booklets mentioned above. Between 2400 and 2500 examinees were used in item parameter estimation which was carried out with the aid of LOGIST (Wingersky, 1982; Wingersky, Barton, & Lord, 1982).

¹The most recent references to LOGIST are given but the 1976 version of the computer program was used in our analyses.

Table 3.3.1

NAEP Math Item Response Model Parameter Estimates
(9 Year Olds, 1977-78)

		<u>_</u> •			<u> </u>		<u> </u>				-		=
		Booklet	No. 1		• • •	Book1et	No. 2			Booklet 1	No. 3		
Test								•	ł		•		
Item	1−p	,	3-p		1-p	•	3 - p	i d	1-p	<u> </u>	3 - p		
	ĥ	ъ̂,	â	ĉ	ĥ	b	â	ĉ	ĥ	b	â	ĉ	
.1	22	.20	1.15	.19	-1:39	-2.86	.24	.09	44	2.67	. 08	.01	
2	.17	.30	1.20	. 09	-1.40	-2.82	.25	.09	31	-1.76	.09	.01	
3	22	.15	1.20	.17	-2.63	-2.36	. 77	.09	.15	.24	• 27	.01	
4.	-2.55	-4.01	. 37	• .06	-2.13	-1.64	.99	.09	14	. 54	.15	.01	
5	-2.33.	-3.39	.40	•06	-2.21	-1.86	.85	. 09	-1.58	-4.96	.17 .	.01	
	đ				1								
. 6	93	-1.77	.27	.06	-1.40	-1.07	.92	. 09	-1.23	-1.24	. 64	.01	
7,	2.18	1.91	1.56	· • 07	1.99	-1.49	1.05	.09	3.62	3.22	. 76 .	.01	
8/	.82	.86	.70	.03	-1.68	-1.26	1.00	.09	_s -1. 49	-2.31	• 37	.01	
9	.21	.38	.51	. 05	42	10	1.58	.12	. 93,	48.36	.01	.01	
10	.53	. 58	1.13	.08	48	20	1.42	.09	-1.63	-1.97	.50	. 01	
. 11	-2.32	-1.62	1.42	.06	.01	.09	1.48	. 05	.04	.69	1.22	.27	
12	-1.81	- 1.30	1.26	.06	01	.09	1.26	.05	-1.94	-5.11	.21	.01	-رر-
13	-2.17	-1.48	1.55	.06	2.63	2.18	1.07	.03	.83	-J.11 .70	.82	.01	ĭ
14	-1.13	-1.48 79	1.24	.06	.60	.71	.95	.02	1.65	1.52	.71	.01	
15	-1.62	-1.09	1.49	.06	-1.13	-1.00	.66	.09	1.15	.81	1.14	.00	
13	-1.02	1.09	1.47	.00	-1.13	-1.00	•00	.09	1.13	.01	3	.00	
16	-1.20	81	1.39	.06	32	.06	1.03	.17	6.31	4.83	.88	00	
17	.19	.51	.32	.06	-1.13	93	.82	.09	31	.29	.89	.02	
₩ 18	-1:64	-1.63	.65	.06	-1.14	88	.83	. 09	02	05	.53	.01	
19	-1.90	-2.23	.52	.06	26	~.07	. 99	.09	-1.50	-1.28	.88	.01	
20	60	47	. 79	.06	1.99	1.64	1.07	.03	-2.00,	-1.69	.89	.01	
		,					1 04		0.70			0.1	•
21	.48	. 37	1.19	.01	60	33	1.06	.09	-2.73	-4.04	.′40	.01	
22	1.55	1.25	1.46	.06	32	10	1.19	.09	-1.58	-1. <u>59</u> _	- 66	.01	
23	14	• 32	1.39	.21	.52	.49	1.25		-1.64	-1.64	67	.01	
24	-1.69	-1.22	1.20	.06	-3.50	2-87-	. 96	.09	-1.27	1.62	.47	.01	
25	.49	.43	1.04	03	-3.48	-3.12	.81	. 09	28	21	1.02	.01	er .
-26	. 06	.10	1.35	.03	-3,62	-2.93	1.00	. 09	-1.91	-1.51	1.05	.01	
27	82	- . 56	1.06	.06	-3.03	-3.07	65		-1.75	-1.34	1.11	.01	
28	, .68	.60	, .86	.02	-2.67	-2.71	.64	• 09	-1.17	85	1.18	.01	
, .29	-1.35	-1.07	.93 *	.06	1.58	2.45	1.10	.16	81	 62	1.05	.01	
30	83	 53	1.33	.06	1.55	2.38	.56	.09	-1.41	-1.06	1.14	.01	
<i>5</i> 0	•05	•	.	• 00	1.55	2.30	• 50	• 0)	1.71	1.00	T • T ¬		
					<u> </u>				<u> </u>				_

NAEP Math Item Response Model Parameter Estimates (9 Year Olds, 1977-78)

				·	~ •		Ū.		·	•	<u> </u>	
Test		Booklet	No. 1	. ,	, ,,	Booklet	No. 2		Booklet No. 3			
Item	1-p ŝ	ĵ	3-p â	ĉ	1-р. ъ̂	ĥ	3-p â	· • • • • • • • • • • • • • • • • • • •	1-p ô	b	3-p â	ĉ
31	89		.98 💉	. 06	1 20	1.06	.80	.00	-1.00	 75	1.10	.01
32	3.59	66	2.00	.06 .02	1.20	.88	.94	.00	4.23	3.57	.85	.01
33	1.61	2.51	.1/2	.06	1.10 .03	.18	1.15	.00	.91	1.41	.77	.15
34	64	8.93	. 4.2 . 56	.06	10	.08	1.13 1.13	.09	-2.06	-1.97	.73	.01
35	-1.51	63	.71	.06		.27	1.10	. 09	-2.00 26	 97	.15	.01
33	-1.51	-1.41	. / 1	.00	.13	• 2 /	1.10	• 09	20	- • 3,7	. 13	•01
36	68	51	.89	.06	.50	1.38	.87	.26	-1.11	94	. 87	01
37 ´	2.47	1.88	1.00	.00	-1.87	-1.74	.69	.09	1.68	1.45	. 79	.01
38	-2.99	-3.93	.47	.06	1.60	1.68	. 91	. 07	-1.47	-1.71	. 54	.01
39	1.53	2.52	.67	.13	1.21	1.86	1.79	.21	-3.45	-4.02	~5 8	.01
40	1.77	2.40	1.00	.13	61	 35	1.09	. 09	-4.21	-5.24	.60	.01
		2.40		, ,		7.35	_,,,			•		
41	1.55	1.07	1.33	.00	.46	.35	1.17	.01	5.57	3 .6 6	1.11	.00
42	1.77	1.58	.77	.00	-1.07	 65	1.35	.09	5.48	3.76	1.04	.00
43	*4.02	2.53	1.40	.00	25	15	1.40	.01	5.66	3.49	1.23	00_
44	4.90	2.80	1.62	.00	-1.20	74	1.42	.09	, 5.76	3.78	1.10	.00
45	1.03	2.56	.27	.06	.18	.15	1.21		5.87	3.32	2.00	.01
	ľ	2.30	•		,	and the second s		1				1
46	.69	.96	1.18	.16	1.58	1.77	1.15	.11	2.08	·1.88	73	<i>.</i> 01
47	18	15	. 37	.06	-2.37	-3.15	.44	.09	1.51	1.22	1.09	.04
48	-1.74	-1.51	.82	.06	-1.23	93	.88	.09	-2.62	-2.48	۶ <u>7</u> 6	.01
49	1.02	1.14	1.38	.13	.00	.16	.85	.09	-2.58	-2.15	.98	.01
.50	72	-1.48	. 24	.06	, . 39	.58	.75	. 09	-2.41	-1.95	1.05	.01
51	1.23	- 00	.21	.06	-1.49	-3.33	.23	.09	-2.05	-1.75	.90	.01
^{**} 52	71	3.82 3.32	.14	.06	-1.04	63	1.27	.09	-2.21	-1.96	.85	.01
5 3	2.49	2.49	1.51	.07	01	.39	1.44	.20	-2.22	-1.91	.90	.01
54	2.55	2.49	1.17	.06	.28	.73	.76	.15	16	27	• 39	 01
55	5.06	3.11	1.44	.00	1.20	2.30	.60	.15	1.98	3.37	.69	.12
56	2.14	1.60	1.05	.00	17	.02	.45	.09	-1.43	-1.27	.82	.01
57	12	.48	.82	.15	17	1.21	.65	.16	86	84	.69	.01
5 8	1.32	1.33	1.08	. 13	74	56	.73	.09	10	25	. 28	.01
59 -	1.06	1.33	1.62	.15	.01	.29	• 7 5 • 94	.13	1.36	2.02	1.01	17
60	1.51	1.20	.63	.13	1.33	1.34	.94	.13	96	-1.05	.59	0.L
)	1.7.	* T • 13	•05	•01	1.33	1.34	. 74					

Table 3.3.1 (continued)

NAEP Math Item Response Model Parameter Estimates
(9 Year Olds, 1977-78)

Ţest	4.	Booklet	No. 1	n Project		Booklet	No. 2	Booklet No. 3				
Item	1 -p		3-p		1-p		3-p		1-p		3-p	
<u> </u>	ĥ	ĥ	â	- ĉ	b .	ĥ	â	ĉ	ъ̂	î	• â	ĉ
61	.2.41	1.88	1.13	.02	-2.18	-4.00	.09	.09	.73	. 78	1.08	.09
62	-1.9 5	-1.94	.66	.06	.30	.83	-35	.09	07	.18	1.42	12
63	.09	.17	.94	.06	1.49	2.43	1.26	.18	.43	68-	33	.01
64	. 70	.99	.71	.10	2.01	2.49	1.79	.12		1.27	. 94	.06
. 65	1.12	3.31	.22	.06	1.21	4.72	.19	.09	-1.41	-1.39	. 68	.01 `
. 66					2.12	2.14	. 75	.03	51	-1.03	.28	.01
67					1.14	1.45	.68	.09	.70	.56	. 91	.01
68					4.82	.3.15	1.23	.00	66	84	.49	.01
69			•	4.	.06	.35	.46	.09				,
70		•			2.61	4.84	.38	.03		e e		•
, 71 °					2.88	3.16	.65	.02		•		
. 72					3.28	2.38	1.14	.00				
73			1		.74	1.15	. 57	.09				
74	•				.49	.64	.80	.09				
75				·	.73	1.51	. 39	.09			•	

Table 3.3.2

NAEP Math Item Response Model Parameter Estimates
(13 Year Olds, 1977-78)

					 				I	=		
·		Booklet	No. 1	•		Booklet	No. 2			Booklet No	3	
Test		,			_		_					
Item	1-p		3−p		1-p 6		3-p	_	1-p		3-p	_
	- ĥ		â	Ĉ	ъ̂	ĵĥ	â	ĉ	ĥ	- ĥ	â	ĉ
1	-1.92	-1.43	1.00	.11	32	26	.71	.04	-1.51	86	1.52	.11
2	-3.71	-2.40	. . 77	.11	.10	.28	1.10	.10	-1.68	-1.00	1.48	.11
3	-2.19	-2.87	.77	.11	67	77	.54	.04	-1.13	-1.27	.43	111
4	09	.03	1.72	:04	86	-1.07	.49	.04	39	-1.27 14	• 4 3	.11
5	67	34	1.15	.11	30	02	1.13	.13	. 39	.39	1.21	.06
6	.66	1.05	1.12	.17	1.56	1.58	.72	,				
7	.45	.94	1.19	.21	 03			.00	-2.63	-3.12	.48	.11
8.	94	-1.78	.24	.11		.05	.78	.04	79	47	.90	.11
~o. 9	1	,	.67		-3.13	-3.51	.63	. 04	-2.06	-1.58	.89	.11
9 10	.95	1.39		.11	-1.78	-1.25	166	04	1.51	2.21	1.00	.16
10	-1.60	-1.12	1.06	.11	-1.72	-1.21	1.65	.04	1.29	2.59	1.21	.22
11	-3.22	-2.27	1.31	.11	-1.61	-1.15	1.58	.04	-2.07	-1.73	.77	.11
12	-2.88	-2.09	1.20	.11	-1.40	-1.01	1.45	.04	.84	.60	1.10	.00
13	-2.72	-1.94	1.23	.11	-2.51	-2.35	.83	.04	.15	.16	1.15	.03
14	-2.65	-2.00	1.05	.11	.33	. 52	.54	.04	-2.29	-4:06	.29	.11
15	-2.28	-1.83	.91	, .11	.91	.90	.99	.04	04	.45	1.16	.21
16	-2.20	-1.96	.75	.11	. 0.16	2.06	7.0					
. 17	-1.08	-1.16			-2.16	-2.06	.79	. 04	.19	.61	1.15	.20
18			.48 .78	.11	-1.78	-1.61	.86	.04	.31	.70	1.32	.20
•	2.02	1.86	1.23	.01	-1.89	-1.71	.87	.04	1.06	2.19	2.00	.26
19	54	 25	1.92	.11	-3.03	-3.75	.55	.04	-1.08	· 66	1.12	.11
20	42	20	. 1.92	.04	-3.03	-2.84	.84	.04	.69	.86	1.24	.14
21	25	12	1.71	.02	-2.89	-3.25	.62	.04	36	10	.98	. 11
22	-2.84	-3.41	.50	.11	2.70	3.53	2.00	.06	-2.84	-2.61	.71	.1.1
23	.64	1.27	1.51	.25	.53	. 44	1.18	.01	-3.00	-2.48	.86	.11
24	.81·	1.13	1.12	.16	.22	.23	1.18	.03	-2.94	-2.40	.88	.11
25	07	. 14	.94	.11	48	40	.78	.04	-3.30	-2.68	.92	11
26	-1.10	-1.39	. 39	.11	-2.02	-6.1 7	.19	0/		0.6=		11
27	2.34	3.04	.96	.02	-2.02 19	-0.17 23		.04	-3.37	-2.67	.97	.11
28	1.43	2.75	42	.15	• .,		. 32	.04	-3.12	-2.43	.99	.11
29	1.65	1.46	.87	.02	1.19	1.24	1.39	.10	.14	.47	.84	.14
30	.21	.48	1.18	.15	-2.39	-2.57	.66	.04	1.62	2.02	.82	. 11
30	• ,41	-40	, ., ., .	- 10	1.67	, 1 • 71	.7⊥	.00	. 32	1.16	.30	.11

Table 3.3.2 (continued)
NAEP Math Item Response Model Parameter Estimates
(13 Year Olds; 1977-78)

						<u>·</u>					<u> </u>	 .
. Test	•	Booklet		Booklet	No. 2	B		Booklet	No. 3			
Item	1-p		3∸ p		1-p	\	3-p	•	1-p		3-2	
	î	ĥ	^.	^ '	î	`_^`	^	^			3-p\	^
	<u> </u>	b	a	C	b'	<u> </u>	a	C	ĵ.	<u></u>	a \	С
31	-1.18	<i></i> −.88	.84	.11	.87	78	1.10	.03	1.90	2.80	2.00	.16
32	34	.16	1.46	21	75	-1,03	.42	.04	-1.28	-1.03	.71	.11
3 3	.36	. 66	. 68	. 11	-2.93	-2.43	1.06	.04	40	.66	1.02	14
34	-3.25	-4.13	.47	.11	-1.90	-1.81	· .78	.04	1.49	11.26	1.02	.11
35	 75	73	46	.11	1.29	1.30	.72	.00	02	.20	.97	.11
		.,3	1	•	1.25	1.50	.,2	.00	• 02	.20	• 51	•11
36	1.44	3.75	2.00	.21	39	31	·\ .79	.04	1.16	87.54	.01	.11
37 [*]	6.3	.97	.69	۰.11	75	44	1.30	.10	28	01	.71	.11
38	-1.41	88	1.37	.11	.68	.76	1.07	.07	16	.32 -	.13	.11
* 39	93	-1.24	. 35	.11	.01	.08	.\84	.04	2.13.	2.45	.79	.07
40	71	41	1.05	.11	.20	.40	1.07	.10	84	46	1.11	.11
, 0		. ,_	`			.40	1.07	•10	•04	40	1.11	
41	1.12	1.00	1.11	.05	-2.01	-1.81	.88	.04	.12	.52	.45	.11
42	89	62	. 79	.11	-1.33	-1.13	.96	.04	1.68	3.62	2.00	.11 5
43	-1.39	-1.16	.73.	.11	-1.32	-1.39	.65	.04	2.25		1.19	:00/
. 44 \	82	65	.69	.11	~-1.04	-1.86	. 32	\ .04	86	-1.52	.23	.11
45	.23	.42	.85	.11	70	78	.56	\ .04	.88	1.02	1.17	.13
						5 5		\.		2.02		
46	.74	. 74	1.28	. 08	-1.51	-1.37	.85	. 04	3.63	3.15	1.18	.03
47	2.24	3.06	1.54	. 11	-1.45	-1.17	1.07	.04	.09	. 48	1.00	.18
48	1.92	1.86	.89	. 04	. 1.07	.94	1.02	.16	.70	1.04	1.95	.20.
49 .	.04	.24	.97	.11	1.63	1.27	1.20	.00	.77	.96	1.79	.17
50	-1.82	-1.57	.76	.11	 57	42	1.02	.04	.53	.97	2.00	24
·	•					• •	:	i ,		3		
51	1.67	2.24	1.03	.13	.78	4.44	.12	.04	2.43	1.95	.90	.01
52	46	71	.20	.11	1.62	2.65	.58	.08	.48	.78	.98	.15
53	-1.68	-2.04	• 45	.11	.48	.39	1.18	.00	.06	.14	1.03	.05
54	-1.10	86	.78	.11	-1.87	-2.21	.57	.04	.50	.36	1.10	.00
55	1.24	.95	1.13	.01	.12	.22	.66	.04	\13	.03	1.09	.07
									\			
56 ⁻	-1. 05	 85 `	.71	. 11	` .02	.07	1.44	.03	2.41	2.58	.79	.05
57	.90	.66	1.24	.00	1.95	2.57	2 - 00	.12	1\.64	1.96	1.15	.13
58	-1.19	93	.79	.11	1.64	1.43	1.29	.04	-2 \61	-1.84	1.13	. 11
59					1.51	1.46	1.63	.09	-1.66	-1.30	.81	.11
60	•				-1.16	-1.28	.60	.04	-1.10	-1.01	.55	. 11
<u> </u>												

Table 3.3.2 (continued)
NAEP Math Item Response Model Parameter Estimates
(13 Year Olds, 1977-78)

	Booklet No. 1 Booklet No. 2		Booklet No. 3	
Test Item	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-p ŝ	3-p .	ĉ
61 62 63 64 65 66 67 68 69 70	62 .64 .04 .95 .78 1.07 .00	.80 .36 .90 59 2.45 61 2.07 .25 .07 3.21	.56 1.33 .64 .67 .61 1.40 42 .54 1.80 1.13 38 .67 1.64 .92 .22 1.01 .21 1.12 2.31 1.01	.01 .11 .01 .11 .02 .11 .01 .02 .11
71 72 - 73		.17 .22 97	15 1.14 .17 1.05 82 .60	.02 .00 .11

3.4 Checking Model Assumptions

Checking on two model assumptions, unidimensionality and equal item discrimination indices, with respect to the NAEP math booklets, was carried out. The results will be presented next. It was not necessary to check the level of test speededness because test items were administered one at a time to examinees and they were given sufficient time on each one to provide answers.

<u>Unidimensionality</u>

Checks on the unidimensionality of the math booklets were carried out with NAEP Math Booklet No. 1 for 13 year olds. A study of the eigenvalues was carried out with Black and White samples of 330 examinees. The samples were drawn at random from the available pool of examinees taking the math booklet. The largest eigenvalues for each sample are presented in order in Table 3.4.1. Comparable results from the Black and White samples were obtained: About 15% of the total variance was accounted for by the first factor or component and the ratio of the first to the second eigenvalue was (approximately) 2.8 (2.7 in the Black sample and 2.9 in the White sample). These statistics do not meet Reckase's (1979) minimal criteria for unidimensionality. However, since his criteria are arbitrary and other goodness of fit evidence would be available, the decision made was to move on to other types of analyses.

Equal Item Discrimination Indices

Table 3.4.2 provides item difficulty and discrimination (biserial correlations) information for NAEP Math Booklet No. 1 for 13 Year Olds.

The information is reported for six groups: Two Black and White samples

Somewhat better results were obtained from an analysis of the total sample (N=2422). About 17.6% of the variance was accounted for by the first factor and the ratio of the first to the second eigenvalue was 3.6.

Table 3.4.1

Listing of the Largest Eigenvalues for NAEP Math Booklet No. 1 (13 year olds, 1977-78)

Eigenval	ue		B1	lack Sample (N=330)		White Sample (N=330)
1 2 3 4 5		:		8.4 3.1 1.9 1.8 1.7		8.8 3.0 2.1 1.8 1.7
6 7 8 9 10	•	· · · · · · · · · · · · · · · · · · ·		1.5 1.5 1.5 1.4 1.3	•	1.6 1.5 1.5 1.4 1.3
11 12 13 14 15	•			1.3 1.3 1.2 1.2		1.3 1.3 1.2 1.2
16 17 18 19 20				1.1 1.1 1.1 1.0 1.0		1.1 1.1 1.1 1.0 1.0
% Variano	e			14.4%		15.2%

Table 3.4.2

Summary of Item Statistics for NAEP Math Booklet No. 1 (13 Year Olds, 1977-78)

, D				`								
_		Item D	ifficul	ty Level		,		Item D	iscrimi	nation In	ıdex	
Item			Gro	up ^l			o ·	1	-Gro	oup		
	Black 1	Black 2			White 2	? White	Black 1	Black 2	Black	White 1	White 2	White
1	.68	.68	.68	.88	,90	. 89	.60	.63	.61	.79	,81	.80
2	.82	. 84	.83	.93	.95	.94	.55	.41	.48	.38	.59	.46
3	.88	.87	\. 88	.96	.96	.96	.57	.53	.55	.25	68	.48
4	.12	.13	.12	.61	.65	63	.66	.88	.77	.72	.70	.71
-5	. 39	.42	.40	.75	.66	.71	.70	.65	.67	.68	- .6 6	.67
6	. 34	.22	.28	.41	41	.41	.22	.26	. 24	.59	.45	.52
7	.32	.27	. 30	.44	.49	.47	.29	.28	. 29	.61	.43	.51
8	.63	.66	.,65	.71	74	.72	.26	.16	.21	.04	.41	.22
9	. 19	.15 ·	.17	. 36	. 30	33	.22	.29	.25	.44	.53	.48
10.	. 54	.50	. 5,2	.89.	.84	. 86	.66	`.58	.62	.53	.74	. 65
, 11	.85	.87	.86	.98	.98	98	.78	. 56	.68	.75	.68	.72
12	.84	.83	.84	.98	.95	.96	.80	. 69	.74	.52	.72	.65
13	.83	.78	.81	.95	.97	.96	.72	.60	.65	.66	.88	.75
14	.82	.78	.80	.96	.96	.96	.70	.51	:60	.65	.86	.75
15	.78	.74	.76	.96·	.93	.95	.51	. 59	.55	.61	.71	.67
1,6	. 79	.77	.78	.90	.93	.91	:65	. 59	.62	.53	.56	.53`
17	.50	.53	.51	.73	. 78	. 76.	.32	.49	.40	.41	.32	.37
18	.06	.04	.05	.22	.16	.19	.76	. 57	.68	.56	:36	.47
19	.33	.28	.31		.70	.72	.77	.76	.77	.72	.69	.70
20	. 24	.25	.25	.67	.72	.69	.89	.83	.86	.82	.72	.77
21	.25	.25	.25	.62	.67	.65	.81°	.92	.86	.75	.69	.72
22	.82	.86	. 84	. 92	.96	.94	.52	.26	.40	.38	.84	.52
23	.36	.28	.32	.39	.39	.40	.29	.12	.21	.40°	.40	.40
24	. 2,2	.23	.23	.38	.33	. 35	. 29	40	.35	. 45	.48	.47
25	. 31	.30	.30	.58	.61	.,59	.70 _.	.61	.66	.58	. 70 _.	.64

Sample Sizes are as follows: Black 1 = Black 2 = White 1 = White 2 = 165; Black = White = 330.

Table 3.4.2 (continued)

26 .61 .61 .61 .75 .73 .74 .18 .19 .18 .38 .42 27 .02 .01 .02 .12 .10 .11 .13 .59 .23 .74 .40 28 .21 .16 .19 .24 .18 .21 .17 .27 .22 .18 .22 29 .05 .06 .05 .25 .19 .22 .45 .38 .41 .54 .56 30 .19 .24 .22 .52 .53 .52 .39 .60 .50 .59 .49 31 .55 .56 .55 .78 .81 .79 .55 .59 .57 .65 .66 32 .28 .32 .30 .65 .62 .64 .42 .41 .41 .60 .56 34 .85 .92 .88 .96 .97 .97	The same of the sa					andre and a second desired and							
Black 1 Black 2 Black White 1 White 2 White Black 1 Black 2 Black White 1 White 2 White Black 1 Black 2 Black White 1 White 2 White Black 1 Black 2 Black White 1 White 2 White 2 White 3 Black 1 Black 2 Black White 1 White 2 White 3 Black 1 Black 2 Black White 1 White 2 White 3 Black 1 Black 2 Black White 1 White 2 White 3 Black 1 Black 2 Black White 1 White 3 White	T	· -	Ite	em Diffi	culty Le	ve1			Item D	iscrimi	nation Ir	ıdex	
Black 1 Black 2 Black White 1 White 2 White 6 Black 1 Black 2 Black White 1 White 2 26 .61 .61 .61 .75 .73 .74 .18 .19 .18 .38 .42 27 .02 .01 .02 .12 .10 .11 .13 .59 .23 .74 .40 28 .21 .16 .19 .24 .18 .21 .17 .27 .22 .18 .22 29 .05 .06 .05 .25 .19 .22 .45 .38 .41 .54 .56 30 .19 .24 .22 .52 .53 .52 .39 .60 .50 .59 .49 31 .55 .56 .55 .78 .81 .79 .55 .59 .57 .65 .66 32 .28 .32 .30 .65 .62 .64 .	rtem			° Gr	oup					Gro	 oup		
27 .02 .01 .02 .12 .10 .11 .13 .59 .23 .74 .40 28 .21 .16 .19 .24 .18 .21 .17 .27 .22 .18 .22 29 .05 .06 .05 .25 .19 .22 .45 .38 .41 .54 .56 30 .19 .24 .22 .52 .53 .52 .39 .60 .50 .59 .49 31 .55 .56 .55 .78 .81 .79 .55 .59 .57 .65 .66 32 .28 .32 .30 .65 .62 .64 .42 .41 .41 .63 .49 33 .24 .32 .28 .48 .47 .48 .51 .34 .41 .60 .56 34 .85 .92 .88 .96 .97 .97		Black 1	Black 2			White 2	White	Black 1	Black 2		•	White 2	White
28 .21 .16 .19 .24 .18 .21 .17 .27 .22 .18 .22 29 .05 .06 .05 .25 .19 .22 .45 .38 .41 .54 .56 30 .19 .24 .22 .52 .53 .52 .39 .60 .50 .59 .49 31 .55 .56 .55 .78 .81 .79 .55 .59 .57 .65 .66 32 .28 .32 .30 .65 .62 .64 .42 .41 .41 .63 .49 33 .24 .32 .28 .48 .47 .48 .51 .34 .41 .60 .56 34 .85 .92 .88 .96 .97 .97 .31 .41 .35 .05 .57 35 .51 .53 .52 .74 .68 .71	26 .	.61	.61	.61	.75	.73	.74	.18	.19	.18	.38	. 42	.40
29 .05 .06 .05 .25 .19 .22 .45 .38 .41 .54 .56 30 .19 .24 .22 .52 .53 .52 .39 .60 .50 .59 .49 31 .55 .56 .55 .78 .81 .79 .55 .59 .57 .65 .66 32 .28 .32 .30 .65 .62 .64 .42 .41 .41 .63 .49 33 .24 .32 .28 .48 .47 .48 .51 .34 .41 .60 .56 34 .85 .92 .88 .96 .97 .97 .31 .41 .35 .05 .57 35 .51 .53 .52 .74 .68 .71 .22 .28 .25 .50 .43 36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 07 37 .15 .14	27 ·	.02	.01	.02	.12	.10	.11	.13	.59	.23	.74	.40	.58
30 .19 .24 .22 .52 .53 .52 .39 .60 .50 .59 .49 31 .55 .56 .55 .78 .81 .79 .55 .59 .57 .65 .66 32 .28 .32 .30 .65 .62 .64 .42 .41 .41 .63 .49 33 .24 .32 .28 .48 .47 .48 .51 .34 .41 .60 .56 34 .85 .92 .88 .96 .97 .97 .31 .41 .35 .05 .57 35 .51 .53 .52 .74 .68 .71 .22 .28 .25 .50 .43 36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 -07 37 .15 .14 .14 .39 .42 .40	28	•	.16 .	.19									.20
31 .55 .56 .55 .78 .81 .79 .55 .59 .57 .65 .66 32 .28 .32 .30 .65 .62 .64 .42 .41 .41 .63 .49 33 .24 .32 .28 .48 .47 .48 .51 .34 .41 .60 .56 34 .85 .92 .88 .96 .97 .97 .31 .41 .35 .05 .57 35 .51 .53 .52 .74 .68 .71 .22 .28 .25 .50 .43 36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 07 37 .15 .14 .14 .39 .42 .40 .28 .43 .35 .48 .36 38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61	29	.05	.06			.19				.41			.55
32 .28 .32 .30 .65 .62 .64 .42 .41 .41 .63 .49 33 .24 .32 .28 .48 .47 .48 .51 .34 .41 .60 .56 34 .85 .92 .88 .96 .97 .97 .31 .41 .35 .05 .57 35 .51 .53 .52 .74 .68 .71 .22 .28 .25 .50 .43 36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 07 37 .15 .14 .14 .39 .42 .40 .28 .43 .35 .48 .36 38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61 .58 .70 .72 .71 .28 .44 .35 .46 .34 40 .33 .33	30	.19	.24	. 22	.52	.53	.52	. 39	.60	.50	.59	.49	.54
33 .24 .32 .28 .48 .47 .48 .51 .34 .41 .60 .56 34 .85 .92 .88 .96 .97 .97 .31 .41 .35 .05 .57 35 .51 .53 .52 .74 .68 .71 .22 .28 .25 .50 .43 36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 07 37 .15 .14 .14 .39 .42 .40 .28 .43 .35 .48 .36 38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61 .58 .70 .72 .71 .28 .44 .35 .46 .34 40 .33 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10								1					.66
34 .85 .92 .88 .96 .97 .97 .31 .41 .35 .05 .57 35 .51 .53 .52 .74 .68 .71 .22 .28 .25 .50 .43 36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 07 37 .15 .14 .14 .39 .42 .40 .28 .43 .35 .48 .36 38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61 .58 .70 .72 .71 .28 .44 .35 .46 .34 40 .33 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47		1											.56
35 .51 .53 .52 .74 .68 .71 .22 .28 .25 .50 .43 36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 07 37 .15 .14 .14 .39 .42 .40 .28 .43 .35 .48 .36 38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61 .58 .70 .72 .71 .28 .44 .35 .46 .34 40 .33 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50													.58
36 .29 .24 .27 .23 .15 .19 .14 .07 .11 .00 07 37 .15 .14 .14 .39 .42 .40 .28 .43 .35 .48 .36 38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61 .58 .70 .72 .71 .28 .44 .35 .46 .34 40 .33 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39		3											.28
37 .15 .14 .14 .39 .42 .40 .28 .43 .35 .48 .36 38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61 .58 .70 .72 .71 .28 .44 .35 .46 .34 40 .33 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27	35	.51	.53	.52	.74	.68	.71	.22	.28	.25	.50	.43	. 47
38 .48 .51 .50 .87 .86 .87 .74 .82 .77 .77 .87 39 .56 .61 .58 .73 .72 .71 .28 .44 .35 .46 .34 40 .33 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15													02
39 .56 .61 .58 .70 .72 .71 .28 .44 .35 .46 .34 40 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11		1											.42
40 .33 .33 .72 .76 .74 .68 .64 .66 .67 .68 41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06													.83
41 .12 .10 .11 .27 .31 .29 .58 .22 .41 .66 .46 42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29													.40
42 .47 .47 .47 .72 .74 .73 .40 .54 .47 .51 .61 43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .58 .64	40	.33 .	.33	.33	.72	.76	.74	.68	.64	.66	.67	.68	.67
43 .46 .50 .48 .82 .79 .80 .50 .34 .42 .52 .63 44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .58 .64	41	ł .	.10					9					•55···
44 .44 .39 .41 .77 .76 .76 .68 .65 .66 .52 .36 45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .58 .64													.56
45 .21 .27 .24 .44 .48 .46 .66 .47 .55 .53 .70 46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .58 .64													. 5.7
46 .16 .15 .15 .40 .38 .38 .42 .63 .52 .72 .51 47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .58 .64													.44
47 .13 .08 .11 .08 .12 .10 .19 .03 .12 .07 .05 48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .62 .58 .64	45	.21	.27	. 24	.44	.48	.46	.66	.47	.55	.53	.70	.61
48 .05 .08 .06 .19 .15 .17 .20 .16 .17 .68 .23 49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .58 .64	46	.16											.61
49 .28 .29 .28 .56 52 .54 .62 .62 .62 .58 .64													.05
49 .28 .29 .28 .56 .52 .54 .62 .62 .62 .58 .64	48	ł .			.19								.48
*50 66 73 68 90 87 88 57*** 56 57 85	49	.28	. 29		.56								.61
, of	*50	.64	.73	.68	.90	.87	.88	:57	.54	.55	.52	.85	.69

Table 3.4.2 (continued)

Ltem		Item	Difficul	lty Level			Item Discrimination Index						
	Group				, 4±"	•	Group						
÷.	Black 1	Black	2. Black	White 1	White 2	White	Black 1	Black 2	Black	White 1	White 2	White	
				, .				-					
51	.12	.13	.12	.22	.21	.22	.03	.16	.10	.26	. 40	.33	
52	.50	.49	.50	.65	.68	.67	.16	06	.04	.32	. 28	.30	
53	.70	.70	.70	.85	.83	.84	.33	.61	.47	. 49	39	.43	
54	.55	.49	.52	.79	.72.	.75	.67	.56	.61	.60	.49	.54	
5 <i>5</i>	.06	.06	.06	.32	.30	.31	.74	.65	. 70	72	.58	.65	
				•		,			!	,			
56	.48	.51	.49	.84	.71	. 77	.51	57	.54	.45	.58	.52	
57	.08	.05	.06	.40	.42	41	• .87	.93	.89	.69	.62	.66	
58	.48	.54	.51	.85	.79	.82	.51	.48	.49	. 47	.76	.62	

of 165 examinees, and combined Black and combined White samples of 330 examinees. The results for the four smaller samples are reported here although they were of more importance for an analysis reported later. The discrimination indices obtained with the Black and White samples reveal two things: The item discrimination indices for the two samples are comparable (average absolute difference = .11; Black values were higher times; White values were higher for 35 items) although the White values tended to be a little higher; and more importantly, there is substantial variation among the item discrimination indices (.04 to .89 in the Black sample and -.02 to .83 in the White sample).

In a more complete analysis the following results were obtained:

	Sample	Test		crimination ices l
Booklet	_Size_	Length	<u>Mean</u>	SD
Booklet No. 1, 9 Year Olds	2495	65 ·	.565	.260
Booklet No. 2, 9 Year Olds	2463	75	.565	.260
Booklet No. 1, 13 Year Olds	2500	58	. 585	.250
Booklet No. 2, 13 Year Olds	2433	62	.615	.252

The results above show clearly that the assumption of equal item discrimination indices is violated to a considerable degree. This finding is not surprising because item statistics play only a small part in NAEP mathematics test development. It would be reasonable, therefore, to expect a wider range of values than might be found on a standardized achievement or aptitude test where items with low discrimination indices are most likely deleted. Therefore, it is reasonable to suspect that the two- or three-parameter

 $^{^{\}rm l}$ Correlations were transformed via Fisher's Z transformation prior to calculating the descriptive statistics. The mean is reported on the correlation scale. The standard deviation is reported on the Zr scale.

logistic models will provide a more adequate fit to the test results. This point is addressed in more detail in section 3.6.

3.5 Checking Model Features

When an item response model fits a test data set, at least to an adequate degree, two advantages or features are obtained: (1) item parameter estimates do not depend upon the samples of examinees drawn from the population of examinees for whom the test is designed (i.e., item parameter invariance) and (2) expected values of ability estimates do not depend upon the choice of test items. The extent to which the first feature was obtained with NAEP math data will be presented next.

Item Parameter Invariance

The invariance of item difficulty estimates for Whites and Blacks with the one-parameter model was investigated initially with Math Booklet No. 1 for 13 Year Olds. Three hundred and thirty Black examinees were located on the NAEP data tape. All these examinees were used in the analysis. An equal number of White students were selected at random from the same data tape. Next, the Black and the White student samples were divided at random into two halves so that four equal-sized (N=165) groups of students could be obtained. These groups were labelled white 1," "White 2," "Black 1," and "Black 2." A one-parameter analysis was carried out with each group. The plots of "b" values in the two White and Black samples are shown in Figures 3.5.1 and 3.5.2. The plots show high relationships between the sets of b values (r = .98). What variation there is in the plots is due to model-data misfit and examinee sampling errors. The plots provide a basis for investigating hypotheses

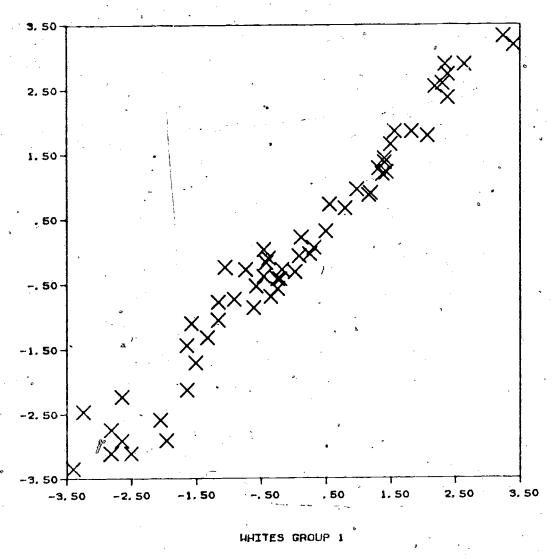
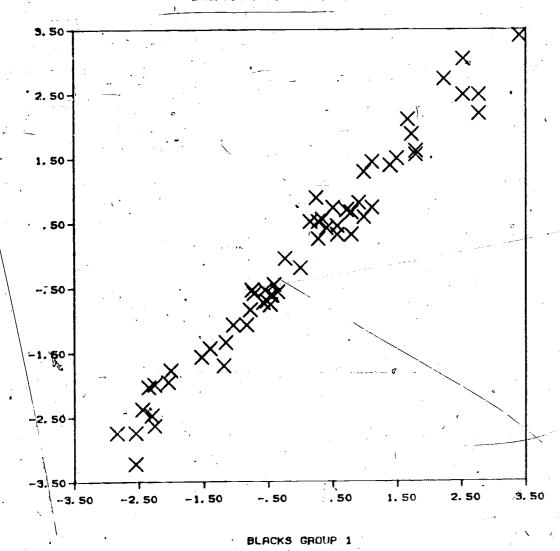



Figure 3.5.1 Plot of b values for the one-parameter model obtained from two equivalent white student samples (N=165).

ŧ

BLACKS GROUP

Figure 3.5.2 Plot of b values for the one-parameter model obtained from two equivalent black student samples (N=165).

concerning the invariance of item parameter estimates. If the feature of item invariance is present, similar plots should be obtained when the Black and White item parameter estimates are compared. Figure 3.5.3 reveals clearly that item difficulty estimates differ substantially in the first Black and White samples (r = .74). Figure 3.5.4 provides a replication of the Black-White comparison of item difficulty estimates. The plot of b values in Figure 3.5.4 is very similar to the plot in Figure 3.5.3 and both plots differ substantially from the baseline plots shown in Figure 3.5.1 and 2 5.2.

Figure 3.5.5 provides a plot of the differences in item difficulty estimates between the two White and the two Black samples (r = .06). The item parameter estimates obtained in each racial group should estimate the same item parameter value if the feature of item invariance is obtained (although the value may be different in the two racial groups). Therefore, the expected differences should be zero and the correlation of these differences across the set of test items in these two racial groups should also be zero. In fact, the correlation is very close to zero. If the feature of item-invariance is present it should exist for any pairings of the data. Figure 3.5.6 shows that the correlation between b value differences in the first and second Black and White samples is not zero (in fact, r = .72!). Clearly, item difficulty estimates obtained with the one-parameter model are not invariant in the Black and White examinee samples.

The appropriate conclusion seems to be that item invariance across the two racial groups is not obtained. However, we stop short here of aftributing the problem to race bias in the test items. There are at least two other plausible explanations: (1) the problem is due to a variable which is

BOOK113 MATH - ITEM B VALUES

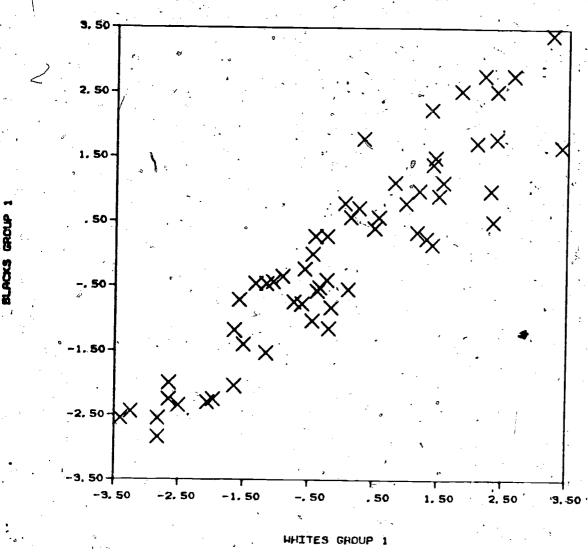


Figure 3.5.3 Plot of b values for the one-parameter model obtained from the first white and black student samples (N=165).

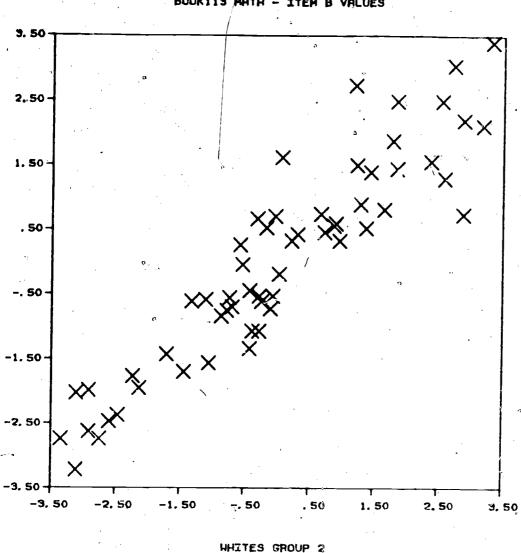


Figure 3.5.4 Plot of b values for the one-parameter model obtained from the second white and black student samples (N=165).

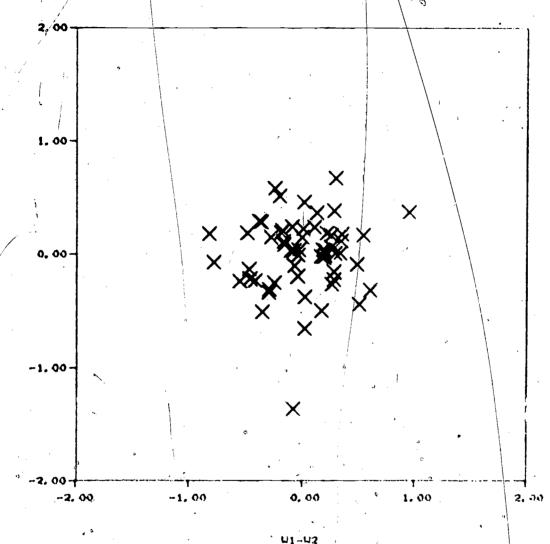


Figure 3.5.5 Plot of b value differences (Black 1 - Black 2 versus White 1 - White 2).

ITEM DIFFERENCE PLOT--BOOK 113

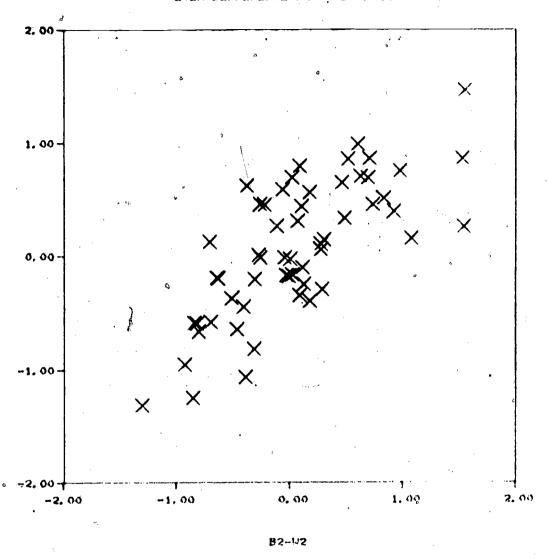


Figure 3.5.6 Plot of b value differences (Black 1 White 1 versus Black 2 - White 2).

confounded with race (e.g., achievement scores/ability level - Blacks did perform substantially lower on the Math Booklets than Whites - see Table 3.4.2); and (2) failure to consider other important item statistics such as discrimination (a) and pseudo-chance level (c). With respect to (2), in other words, the problem is due to model-data misfit. But whatever the explanation it is clear that the feature of item parameter invariance is not obtained. 1

In a follow-up investigation with NAEP Math Booklet No. 1 with 13 Year Olds, the examinee pool was split into high and low performers (the cut-off point was set at the median). Each group contained in excess of 1200 examinees. A one-parameter analysis was carried out with each group. Table 3.5.1 provides three difficulty estimates for each item: fotal group, low ability group, and high ability group. Plots of the three possible combinations are presented in Figures 3.5.7, 3.5.8, and 3.5.9.

The plots are not directly comparable with the earlier ones for race because the sample sizes in this analysis are considerably larger. But, again it seems clear that item parameter invariance is not obtained. This time, however, item parameter invariance was not obtained across high and low ability scorers. Table 3.5.2 and Figures 3.5.10, 3.5.11 and 3.5.12 provide a similar analysis for Math Booklet No. 2 with 13 Year Olds and again the conclusion is the same.

At least two criticisms can be made of the previous analyses summarized in Tables 3.5.1 and 3.5.2: (1) there is no baseline data available for interpreting the plots, and (2) no attempt is made to account for variation in items due to their discriminating power and pseudo-chance level. The analysis described next with Math Booklet No. 1 with 13 Year Olds was

¹Unfortunately the same analyses could not be carried out with the three-parameter model because of the very small sample sizes. An alternate methodology to handle the small samples was recently proposed by Linn and Harnisch (1981).

Table 3.5.1

One-Parameter Model Difficulty Estimates for Total, Low, and High Ability Groups for NAEP Math Booklet No. 1

(13 Year Olds, 1977-78)

		. ,	A1 111 0	
			· Ability Group	TTd all
Item		Total	Low	High
1		. - 1.58	-1.47	-1.91
2		-2.45	-2.39	-2.64
2		-2.98	-2.88	-3.56
				08
4 5	, ·	.45	1.00	
2		19	06	- .54
6		1.28	1.14	1.47
7		1.04	.89	1.26
8	, ·	48	84	.18
9	•	1.59	1.25	1.90
10		-1.22	-1.03	-1.87
11		-3.01	-2.88	-4.02
12	•	-2.64	- 2.53	-3.24
13		-2.46	-2.32	-3.33
14 .	•	-2.38	-2.25	-3.07
15	•	-1.97	-1. 87	-2.34
16	v.	-1.89	-1.9 3	-1.61
1 7	· 	65	83	20
		2.78	3.10	2.82
19		 05、	.18	 33
20		.08	.58	64
21		.27	.73	24
22 -		-2.60	-2.65	-2.23
23	•	1,.25	.85	1.64
24	•	1,44	1.28	1.64
25		.47 _	. 59	. 45
26		67	83	- .25
27	.*	3.13	3.10	3.27
28		2.13	1.3%	2.68
29		. 2.37		2.44
30		.77	.93	.74
31		 76	67	89
32		.18	. 36	.03
33		.94	.79	1.16
34	*	-3.04	-3.10	-2.59
35		28	- 42	.04
36		2.14	1.01	3.01
37 .	·	1.24	1.07	1.46
38	+ *	-1.00	79	-1.71
39		48	80	.14
40	•	24	08	55

Table 3.5.1 (continued)

Item	•	Total	Abilty Group Low	High
41		1.79	2.05	1.79
42		43	39	42
43		99	92	-1.08
44		37	3 9	21
45		.80	.85	.87
46		1.37	1.66	1.32
47		3.02	2.01	3.64
48	*,	2.67	2.65	2.80
49		.59	.79	.50
50	• .	-1.47	-1.42	-1.50
51		2.40	1.73	2.83
52		.04	40	" . 69
53	•	-1.31	-1.42	91
54 °		 67	63	63
55 、		1.91	2.52	1.83
56		62	 59	 56
5プ		1.54	2.33	1.33
58	ጜ ,	77	 71	80

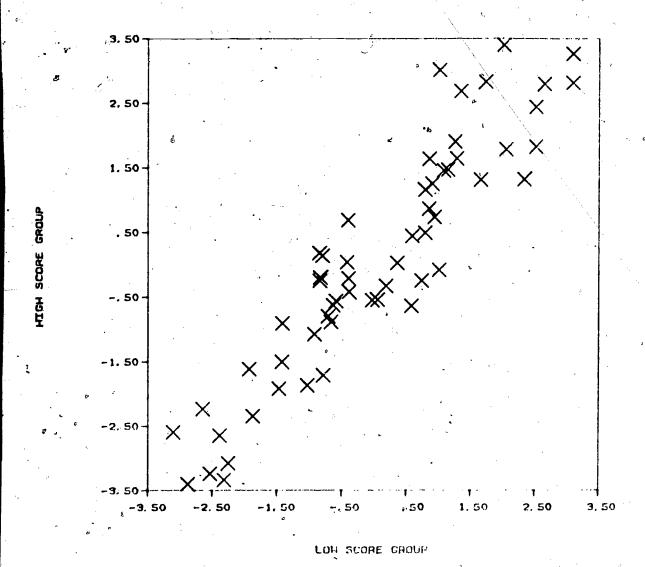


Figure 3.5.7 Plot of one-parameter model item difficulty estimates for the low and high scoring ability groups on NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

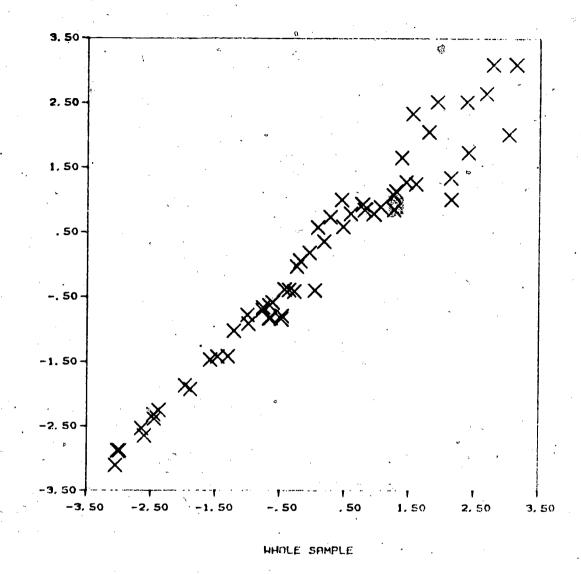


Figure 3.5.8 Plot of one-parameter model item difficulty estimates for the low and total ability groups on NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

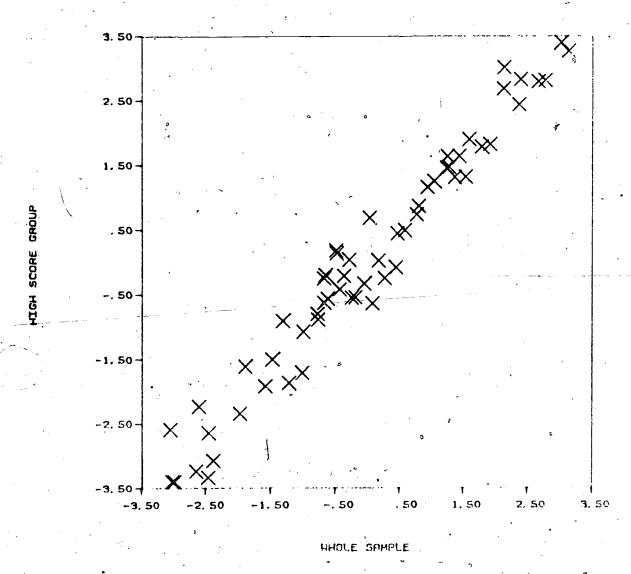


Figure 3.5.9 Plot of one-parameter model item difficulty estimates for the high and total ability groups on NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

Table 3.5.2

One-Parameter Model Difficulty Estimates for Total, Low, and High Ability Groups for NAEP Math Booklet No. 2

(13 Year Olds, 1977-79)

•		•	. Ability Group	
tem		Total	Low	High
1	a .	.21	.21	.28
2	%	.72	.91.	.63
- 3		22	42	.14
4		45	63	-,.09
5		.24	.43	.06
. 6	· .	2.52	2.80	° 2.58
7.	· · · · · · · · · · · · · · · · · · ·	. 57	.60	.61
8		· -3.23	-3.26	-2.,99
9		~1.58	-1.36	-2.91
10	•	-1.51	-1.29	-2.7 3
11	•	-1.3 7	-1.16	-2.36
12	•	-1.12	89	-1.97
13	i	-2.49	-2.41	-2.85
1.4	;	1.00	.75	1.26
15.		1.72	198	1.68
16	-1	-2.0 5	-2.02	-2.06
17 .		-1.58	-1.52	-1.76
18		-1.72	-1.64	-1.95
19		-3.13	-3.25	-2.48
20		-3.12	-3. 12	-2.98
21		- 2.96	-3. 06	-2.36
22		3. 92	2 .3 5	4.79
23	· /	1.26	1.70	1.09
24	,	• .87	1.19	.70
25	•	.02	.05	.04
26		. -1. 87	-2.23	 9 3
27	•	.37	10	. 92-
28		2.06	1.96	. 2.17
29		-2.34	-2.34	-2.22
3 0 ·	, ,	2.66	2.78	⋄ 2.70
31. "		1.67	2.05	1.59
32	•	 32	 55	11
33 %		-3. 01.	-2.88	-4.01
34		-1.72	-1.70	-1.73
3 5	•	2.19	2.42	2.19.
36		.13	.1.7	.15
37		32	06	78
38	• •	1.44	1.56	1.45
3 9	¢	.61	- 67	.62
40	1 p	.86	.98	.83

Table 3.5.2 (continued),

	•			. ,	Ability Group	e
Item				Total	j ,	High
•		٠			, , , , ,	
41				-1.86	-1.79	-2.12
42				-1.03	·92	-1.32
43	5 '			-1.01	-1.01	 93
44				67	 97	08
45				26	36	04
46				-1. 25	-1.19	-1. 35
47				-1.18	-1.01	-1.73
48		•		1.91	2.14	1.90
49				2.61	3.32	2.55
50	•			09	13	39
51			-	1.57	.54	2.32
52		:	•	2.60	1.90	.2.93
53			*	1.19	1.76	.96
54				-1.69	-1.80	-1.28
5 5	٠	•		.75	.66	.88
56				.62	1.11	.26
57	•	,		3.00	1.78	3.64
58	-		-	2.62	2.82	2.64
59				2.46	2.13	2.65
60				82	89	59
,61				15	28	.80
62				1.77	2.26	1.66

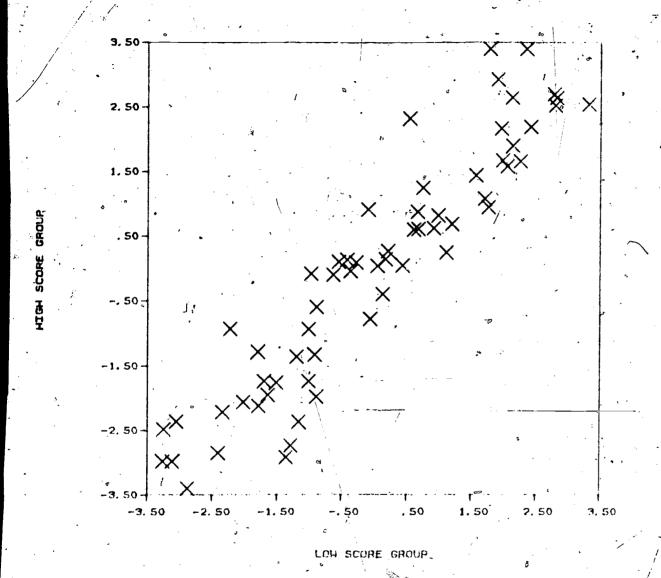
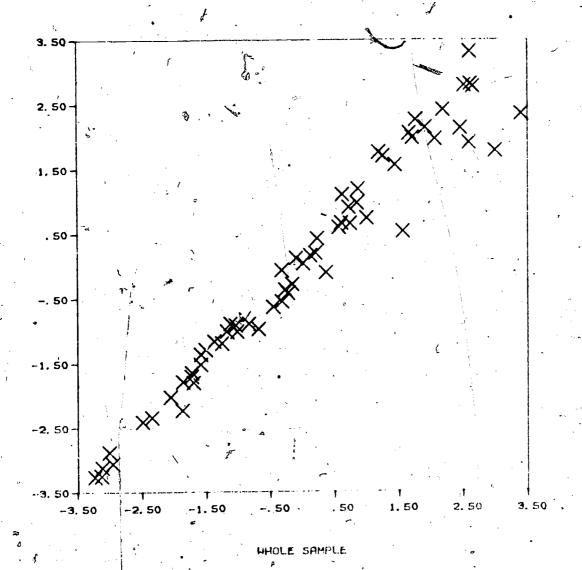
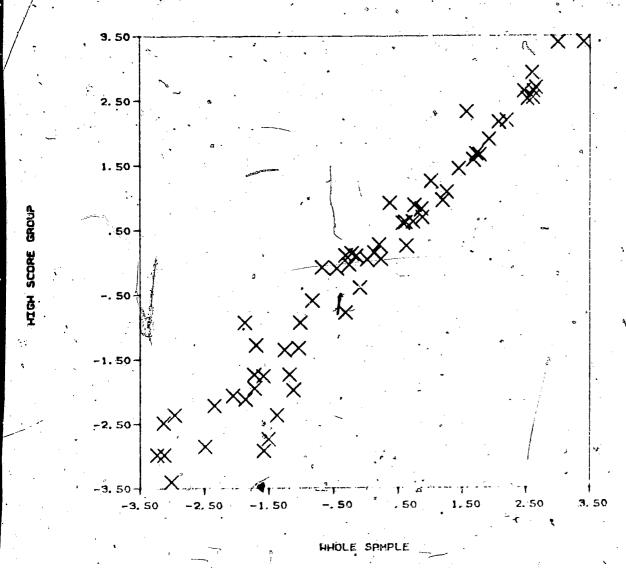
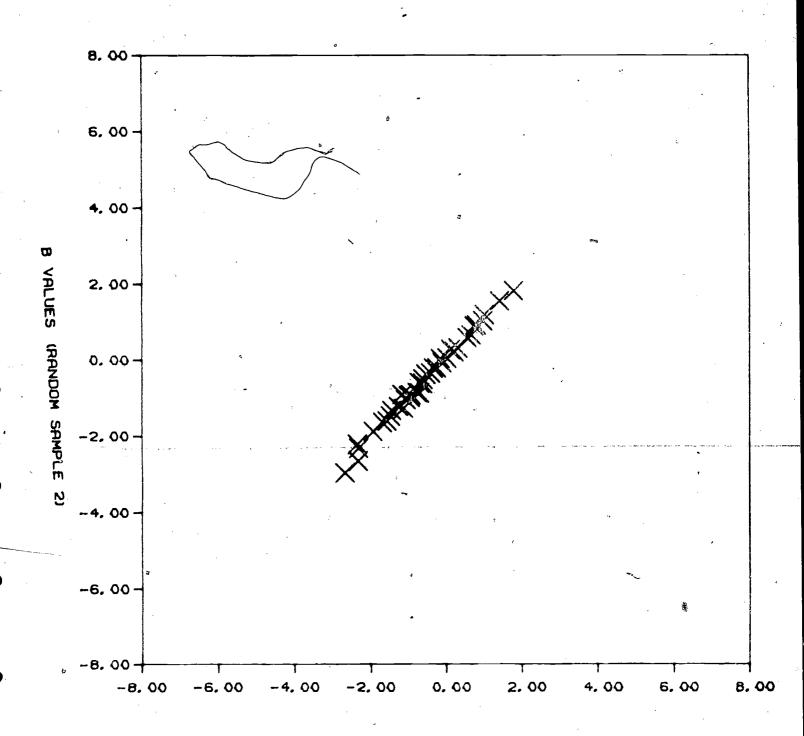



Figure 3.5.10 Plot of one-parameter model item difficulty estimates for the low and high scoring ability groups on NAEP Math Booklet No. 2 (13 Year Olds, 1977-78).

LOW SCORE GROUP

Figure 3.5.11 Plot of one-parameter model item difficulty estimates for the low and total ability groups on NAEP Math Booklet No. 2 (13 Year olds, 1977-78).

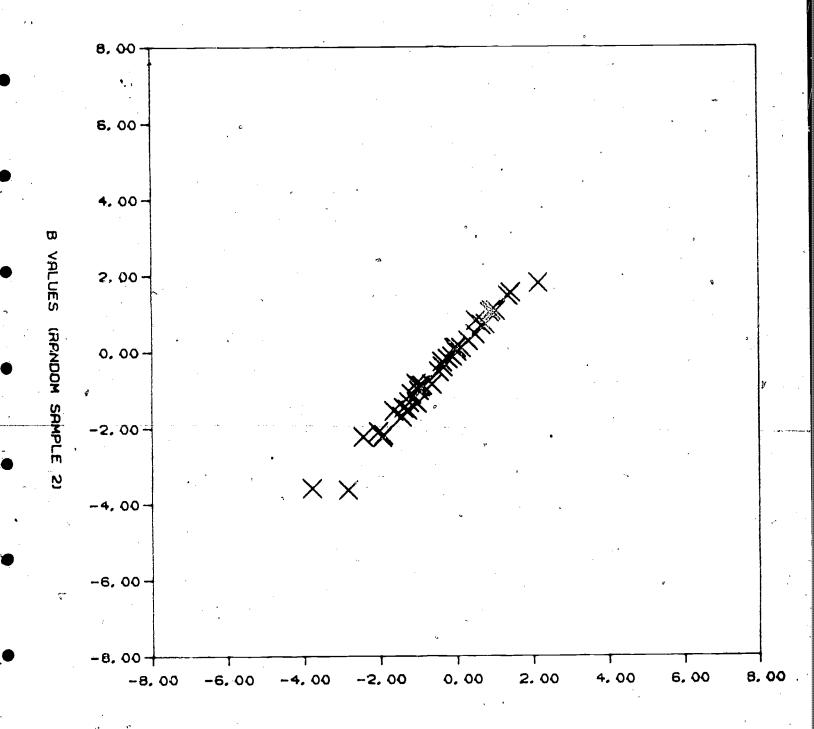



Figure 3.5.12 Plot of one-parameter model item difficulty estimates for the high and total ability groups on NAEP Math Booklet No. 2.(13.Year Olds, 1977-78).

carried out to address the two deficiencies. A group of 2400 examinees was found with the 1200 lowest ability students and 1200 highest ability students. The (approximately) 22 middle ability students were deleted from the analysis. Next, the 2400 examinees were divided on a random basis into two equal sub-groups of 1200 examinees. Each sub-group was used to obtain one-parameter and three-parameter model item estimates. Figures 3.5.13 and 3.5.14 provide the plots of b values in the two samples obtained with the one- and three-parameter logistic models. The item parameter estimates in the two samples with either test model are nearly identical. Thus, item parameter invariance across random groups is established. Next, the 2400 examinees were divided into two equal-sized low and high ability groups (again, N=1200) and the analyses and plots carried out with the random groups were repeated. The results for the one- and three-parameter models are reported in Figures 3.5.15 and 3.5.16 respectively.

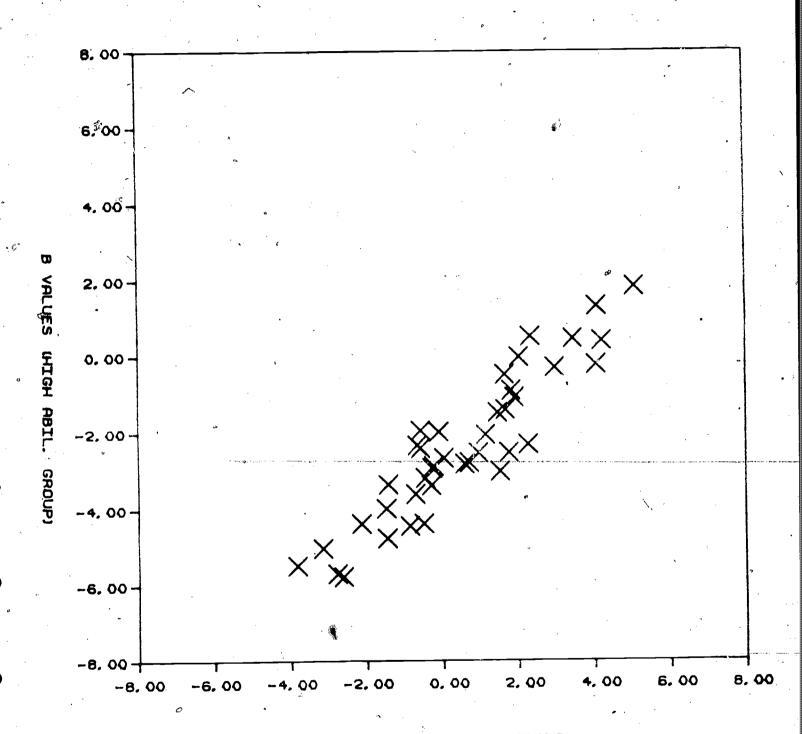
If the feature of item invariancewas present all four plots should have looked the same. In fact, the plots in Figures 3.5.15 and 3.5.16 are substantially different from those in Figure 3.5.13 and 3.5.14. However, it is not plausible at this time to explain the differences in terms of a failure to account for essential item statistics (i.e., discrimination and pseudolevel) since the one-parameter and three-parameter plots of item difficulties for high and low ability examinees shown in Figures 3.5.15 and 3.5.16 are similar. One possible explanation which remains is that item parameter estimation is not done very well when extreme groups are used. Of course another possibility is that the test items are functioning differently in the two ability groups, i.e., item parameters are not invariant across ability groups.

¹The close fit between the three-parameter model and several data sets reported in section 3.6 suggest that this explanation is highly plausible.



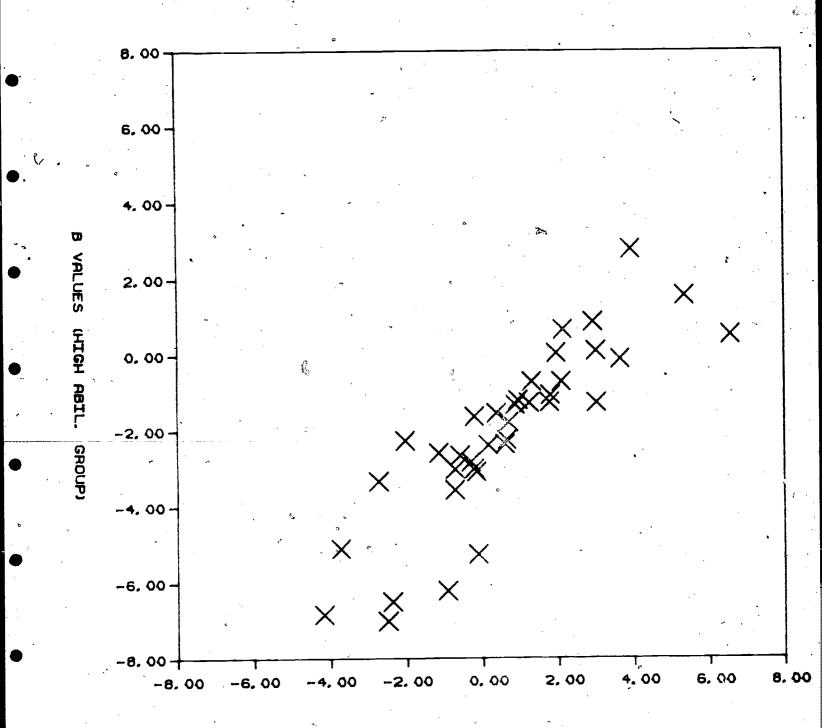
B VALUES (RANDOM SAMPLE 1)

Figure 3.5.13. Plot of one-parameter model item difficulty estimates obtained in two equivalent samples with NAEP Math Booklet No. 1 (13 Year Olds, 1977-78, N=1200).



B VALUES (RANDOM SAMPLE 1)

Figure 3.5.14. Plot of three-parameter model item difficulty estimates obtained in two equivalent samples with NAEP Math Booklet No. 1 (13 Year Olds, 1977-78, N=1200).



B VALUES (LOW ABIL. GROUP)

Figure, 3.5.15. Plot of one-parameter model item difficulty estimates obtained in low and high ability groups with NAEP Math Booklet No. 1 (13 Year Olds, 1977-78, N=1200).

B VALUES (LOW ABIL. GROUP)

Figure 3.5.16. Plot of three-parameter model item difficulty estimates obtained in low and high ability groups with NAEP Math Booklet No. 1 (13 Year Olds, 1977-78, N=1200).

Tables 3.5.3 and 3.5.4 provide the results from a different type of analysis but one which seems promising for addressing item parameter invariance. It has become common practice to address item invariance by conducting a statistical analysis of the b value differences between two groups of examinees (for example, Blacks and Whites). The problem is, as was stated in section 2.1% when the sample size is large, even practically insignificant differences are often statistically significant. The method described next depends upon replication and practically significant differences. In this analysis, a practically significant difference of interest (referred to as the critical value) was selected (=.50) and two equal-sized Black and White examinee samples were divided into two equalsized sub-samples (N=165). A one-parameter analysis of Math Booklet No. 1 with 13 Year Olds was carried out for each group. In Table 3.5.3 items with b value differences exceeding .50 between either the first Black and White samples, or the second Black and White samples, are shown. Twentyseven of 58 items exceeded the critical value with the first samples; 25 of the 58 items exceeded the critical value with the second samples. If. the differences were due to chance factors only, 20.0% of the test items would be predicted to be identified in both samples. In fact, 59.2% of the 27 items (16 items) identified as different in the first samples were identified as different in the second samples. When viewed in the other direction, 16 of the 25 items (or 80%) identified in the second samples were also identified in the first samples.

Table 3.5.4 provides the results of a replication of the study with Math Booklet No. 2 for 13 Year Olds. Eighteen items were identified in sample 1; 15 items were identified in sample 2; 13 of the items were common. In other words, of the 18 items identified in the first samples, 72.2% were

Table 3.5.3

Item Difficulty Differences in Black-White Samples for NAEP Math Booklet No. 1¹ (13 year olds, 1977-78)

Item					Black 1	and	White	Samples	2	
4 6					1.40 -1.06				1.55	
7 8° 10		,			`.82 95 .86				92 .52	
11 12	•		•	-e ·	.99 .80	٠			.61	
13 15			•		.65		. "		1.08	
19 20				٠	.76	r y			.98	
21 23 24	9 .			· •	-1.25 59		٠		.74 85 84	æ
26				. ,	58				69 4 1.54	
2.7 2.8 2.9					-1.31 .59	¢			-1.30	,*
33 35									64 63	. *
36 38 39 40 43					-1.83 .86 66 .51 .57				-2.15 .71 80 .83	
47. 48 51	q	,			-2.03 59				-1.08 70 82	#·*
52 53 _.		••		ų	65				51	9
. 55 56	•				.71 .62	. •			.63	
57 58	,				.86 .70				1.53	

 $^{^{1}}$ Only items with a difference $\geq |.50|$ in one or both samples are reported.

Table 3.5.4

Item Difficulty Differences in Black-White Samples for NAEP Math Booklet No. 2¹
(13 year olds, 1977-78)

		·	<u> </u>	, 4 ·	
	Item	Black an	nd White Samp	les (N=220) 2	
	4		,	57	
	· 6 °.	.51	•		
	9	1.11		.88	
	10	1.45		.66	
	11	.98	•	.88	
	**		•	ž,	
	12	.86	•		•
	13	.70		• •	
	15	· .53		• • • • • • • • • • • • • • • • • • • •	
	19	1 07		.62	
	20	1.27			
£9	22 .	-2.03	_	, -1. 95 T	
	26	 75	•	-1:36	•
	29".	.58		.49	. •
	30	. 54		.83	
	35	1.03		.76	
	50	.62		.62	
	51 .	-1.33		-1.18	•
	53	.63		.94	
		-1.84		-1.54	
	.57 61 →	84		65	
4		•		•	

 1 Only items with a difference 2 | .50 | in one or both samples are reported.

identified in the second samples; and of the 15 items identified in the second samples, 86.7% of the items were identified in the first samples. If chance factors only were operating, about 7% of the items would be expected to be commonly identified in the two samples $(15/62 \times 18/62)$. Clearly, it cannot be argued that item invariance across the two groups is present when the b values are estimated using the one-parameter logistic test model.

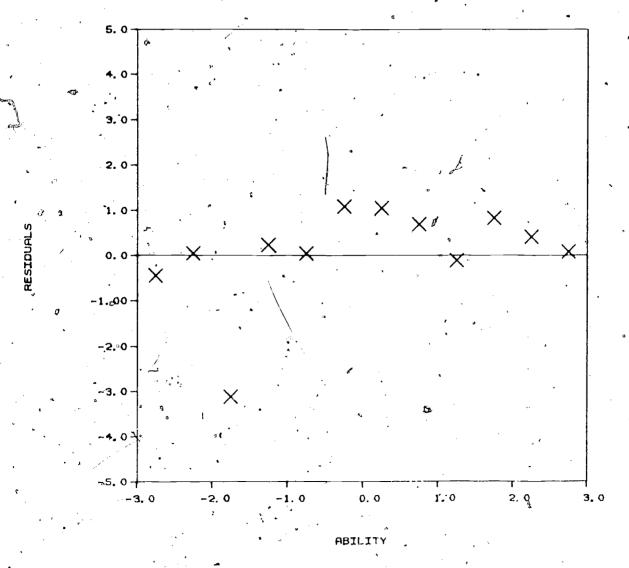
The method described above seems like a promising approach for addressing the problem of item invariance. And, from one point of view, it really doesn't matter what the causes of the differences are. The fact is that item invariance is not found across a variable that can be used to describe the examinee population. It would be misleading therefore to offer only a single set of item statistics. While not investigated here, commonly identified items can be additionally studied to attempt to detect the source of the problem(s). At this stage, directions of any observed differences can be also investigated.

3.6 Checking Additional Model Predictions

This section of our work is divided into two parts: Residual Analyses, and Research Hypothesis Investigations.

Residual Analyses

To carry out residual analyses with Math Booklets Nos. 1, 2; and 3 for 9 and 13 Year Olds it was necessary to prepare a computer program. A listing and sample output of our program is presented in Appendix B. The program was prepared to be compatible with the item and ability parameter estimation output from LOGIST. The program provides both residuals and standardized residuals for each test item at various ability levels (the number is selected by the user). (Twelve ability levels were chosen in our investigation.) In addition, fit statistics are available for each test item (found by summing over ability levels), for each ability level (found by summing over test items), and for the total test (found by summing over ability levels and test items).


A sample set of standardized residuals for Math Booklet No. 1 with 13 Year Olds obtained with the one-parameter model are shown in Figures 3.6.1 to 3.6.11. Two features of the plots in the figures (and other plots we studied) are the cyclic patterns and the large size of the standardized residuals. Item patterns like those in Figures 3.6.1, 3.6.3, 3.6.4, 3:6.5, and 3.6.10 were obtained for items with relatively high biserial correlations. Item patterns like those in Figures 3.6.6, 3.6.7, 3.6.8, and 3.6.9 were obtained for items with relatively low biserial correlations. Also, the standardized residuals tended to be high. In Table 3.6.1 it can be seen that (approximately) 25% of the standardized residuals exceeded a value of 3 when the one-parameter model was fit to the test data. This

 $^{^{\}rm l}{\rm Standardized}$ residual plots for items 1 to 10, and 36 are shown in the figures.

Figure 3.6.1 Standardized residual plot obtained with the one-parameter model for test item 1 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

rigure 3.6.2 Standardized residual plot obtained with the one-parameter model for test item 2 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

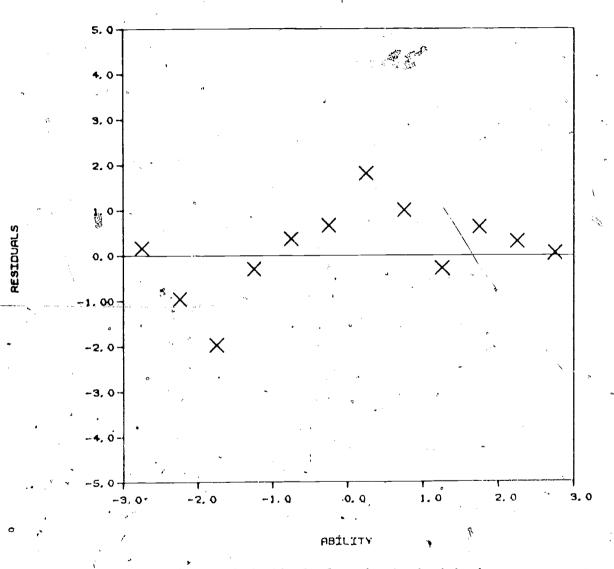


Figure 3.6.3 Standardized residual plot obtained with the one-parameter model for test item 3 from NAEP Math Booklet No. 1 (13 Year olds, 1977-78).

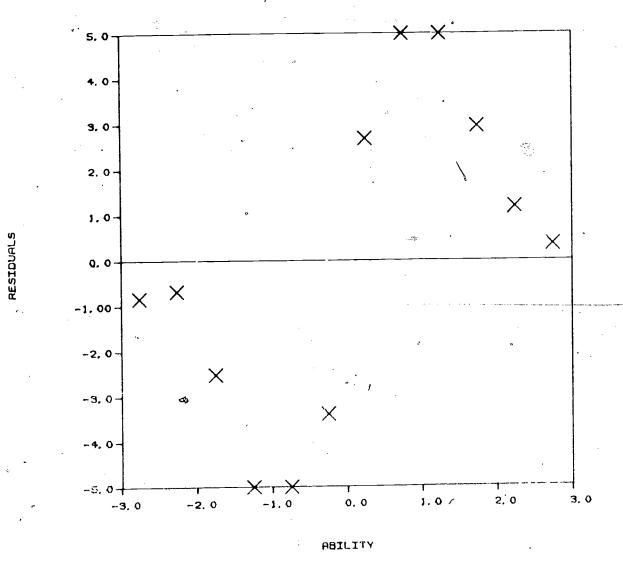


Figure 3.6.4 Standardized residual plot obtained with the one-parameter model for test item 4 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

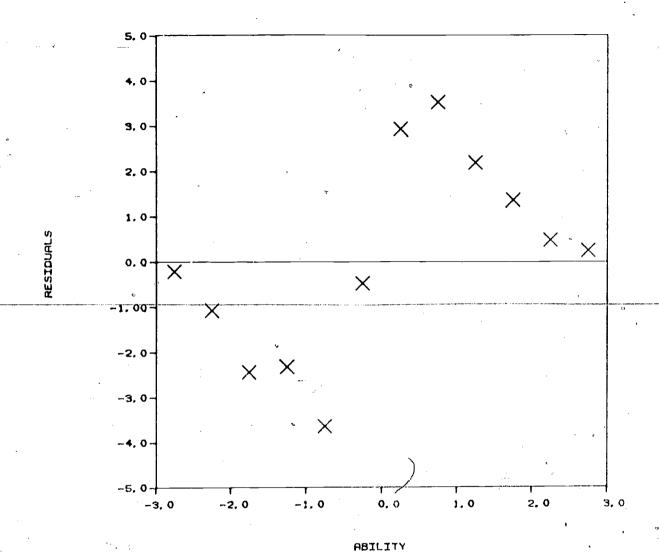


Figure 3.6.5 Standardized residual plot obtained with the one-parameter model for test item 5 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

ERIC *

111

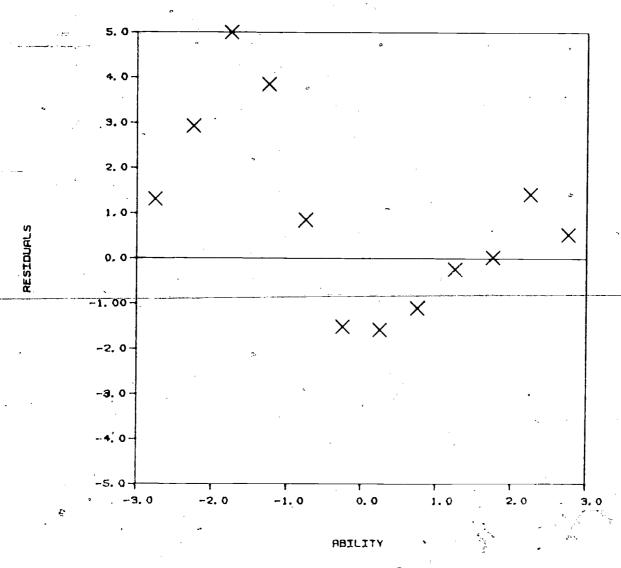


Figure 3.6.6 Standardized residual plot obtained with the one-parameter model for test item 6 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

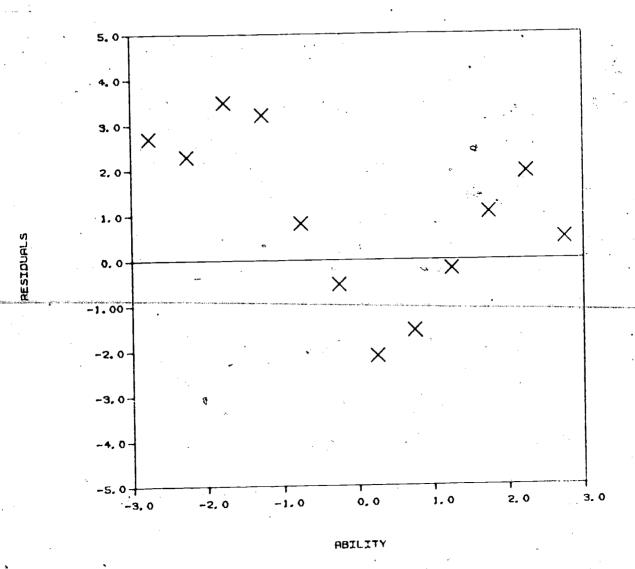


Figure 3.6.7 Standardized residual plot obtained with the one-parameter model for test item 7 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

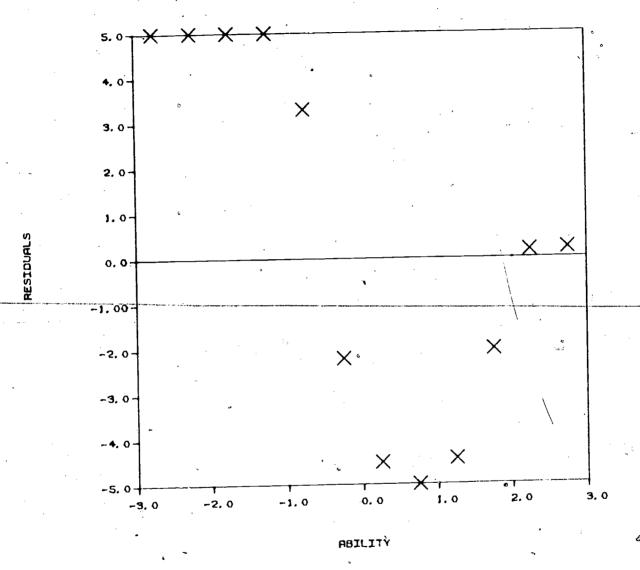


Figure 3.6.8 Standardized residual plot obtained with the one-parameter model for test item 8 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

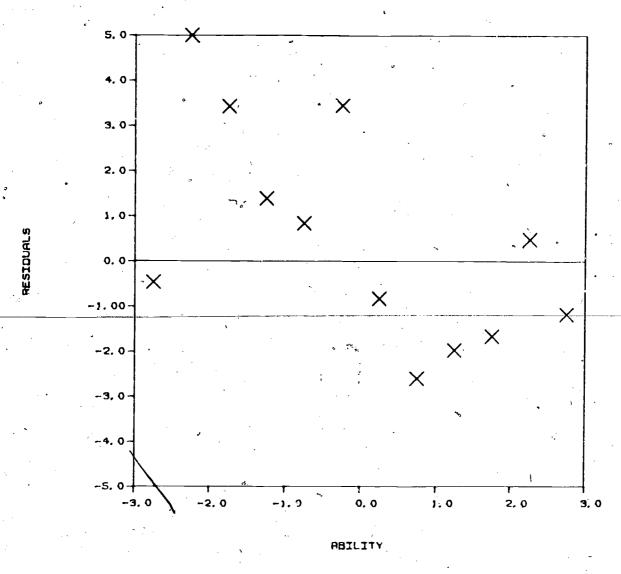


Figure 3.6.9 Standardized residual plot obtained with the one-parameter model for test item 9 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

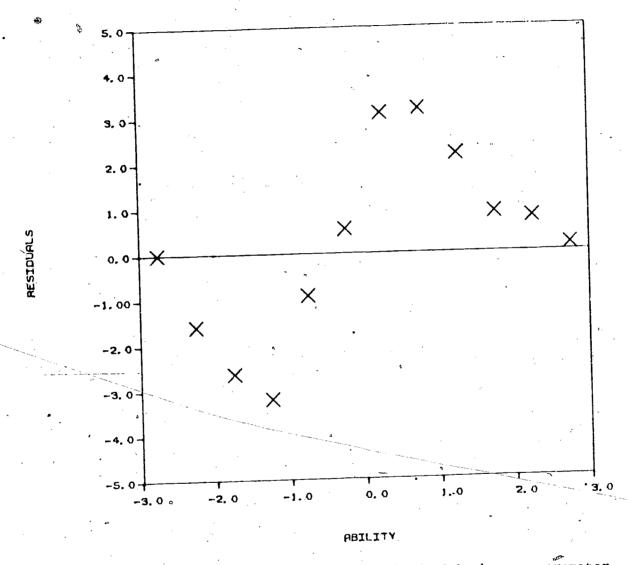


Figure 3.6.10 Standardized residual plot obtained with the one-parameter model for test item 10 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

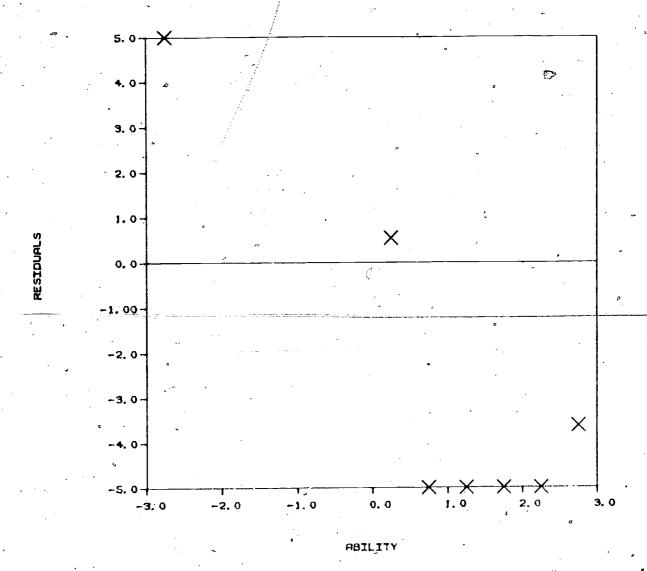


Figure 3.6.11 Standardized residual plot obtained with the one-parameter model for test item 36 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

result was obtained with 6 test booklets. If the model data fit had been good, the distribution of standardized residuals would have been approximately normal.

The standardized residual plots obtained from fitting the three-parameter model and shown in Figures 3.6.12 to 3.6.22 reveal dramatically different patterns. The cyclic patterns which were so evident in the first eleven figures are gone, and the sizes of the standardized residuals are substantially smaller.

Table 3.6.1 provides a complete summary of the distributions of standardized residuals obtained with the one- and three-parameter models for six Math-Booklets. In all cases the standardized residuals are contained with the three-parameter model and the distributions are approximately normal.

Table 3.6.2 reports the average raw and absolute-valued standardized residuals at 12 ability levels with the one- and three-parameter models for the same six Math Booklets. Again, the results in this table reveal the superiority of the three-parameter model. Also, it is clear that the three-parameter model is especially effective at low levels of ability.

Research Hypothesis Investigations

The residual analysis results in the last section were most interesting but it seemed desirable to investigate the misfit statistics further. Tables 3.6.3 to 3.6.6 provide the basic information we worked with for four of the Math Booklets.

¹The average raw standardized residuals provide information about the size and direction of the misfit between the observed results and the ICCs.

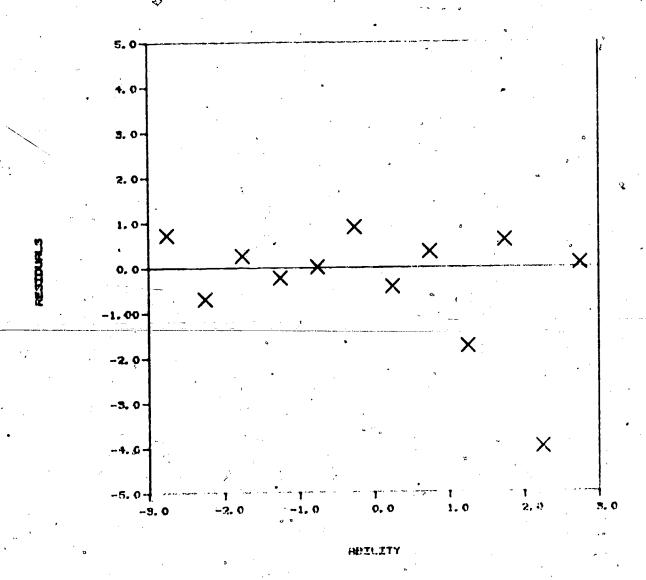


Figure 3.6.12 Standardized residual plot obtained with the three-parameter model for test item 1 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

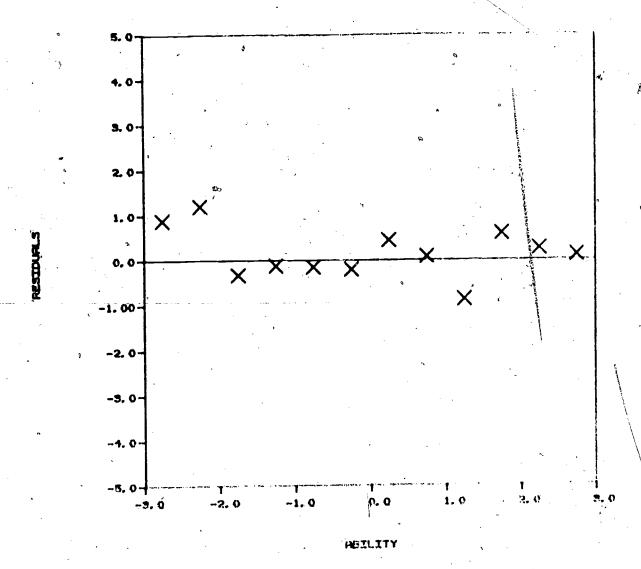


Figure 3.6.13 Standardized residual plot obtained with the three-parameter model for test item 2 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

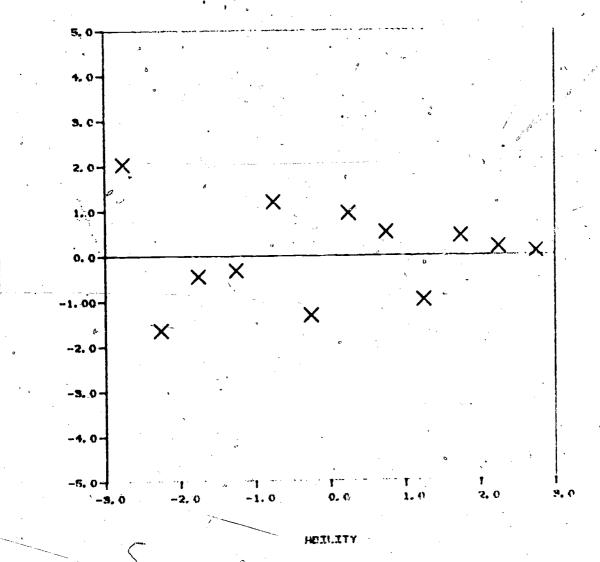


Figure 3.6.14 Standardized residual plot obtained with the three-parameter model for test item 3 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

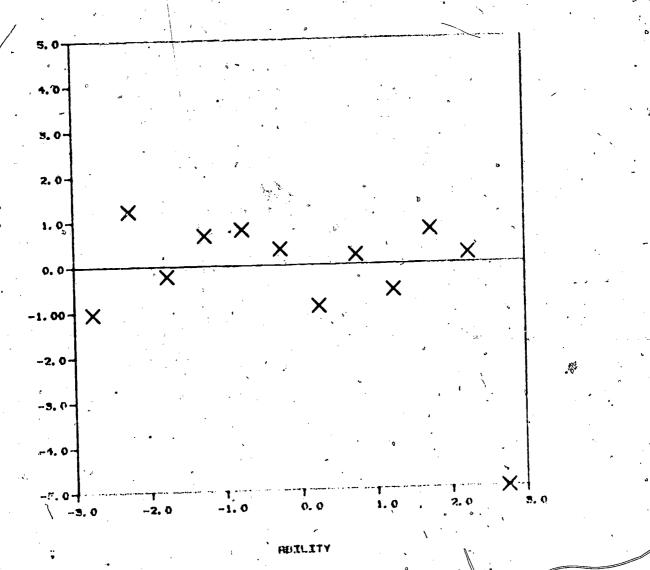


Figure 3.6.15 Standardized residual plot obtained with the threeparameter model for test item 4 from NAEP Mach Booklet No. 1 (13 Year Olds, 1977-78).

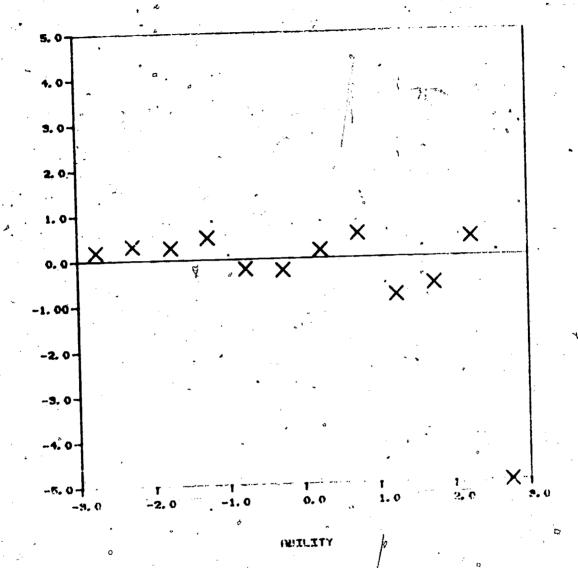


Figure 3.6.16 Standardized residual plot obtained with the three-parameter model for test item 5 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

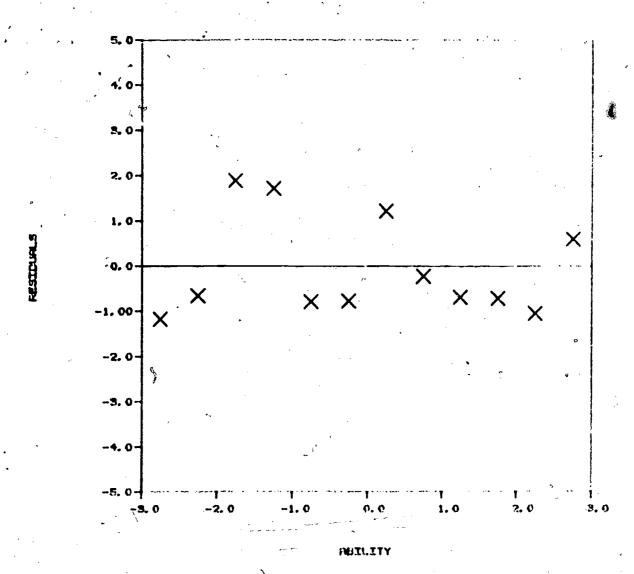


Figure 3.6.17 Standardized residual plot obtained with the three-parameter model for test item 6 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

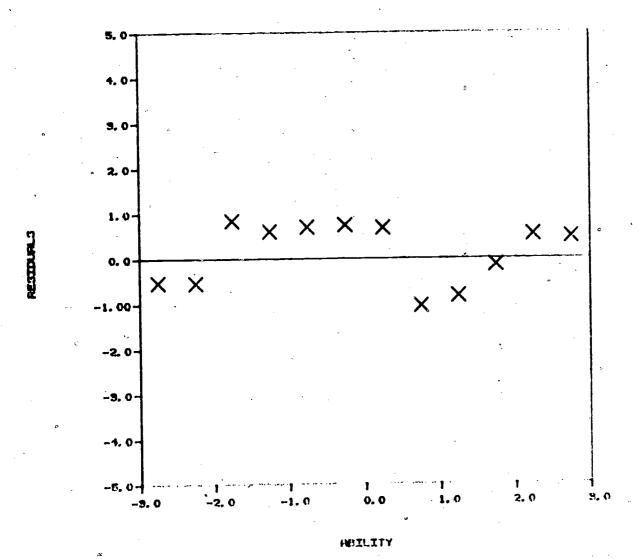


Figure 3.6.18 Standardized residual plot obtained with the three-parameter model for test item 7 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

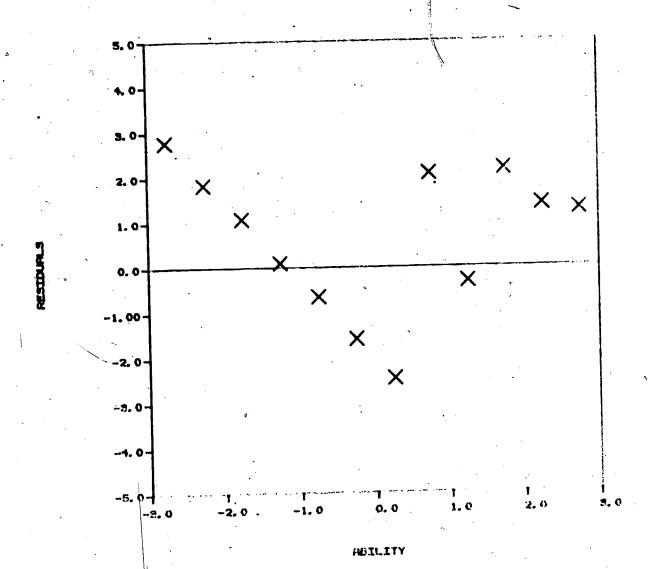
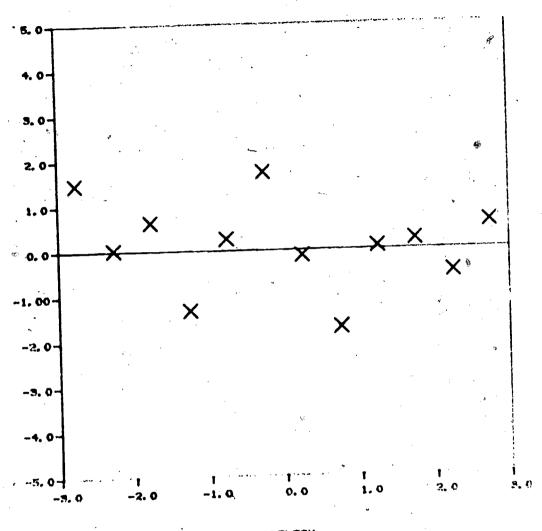



Figure 3.6.19 Standardized residual plot obtained with the three-parameter model for test item 8 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

PULLITY

Figure 3.6.20 Standardized residual plot obtained with the three-parameter model for test item 9 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

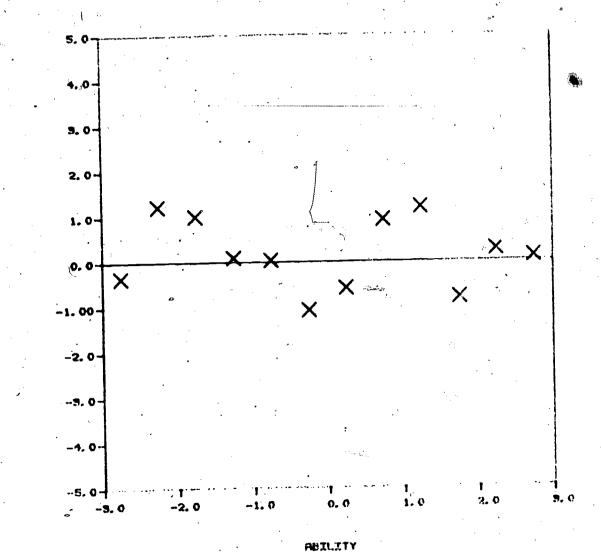


Figure 3.6.21 Standardized residual plot obtained with the three-parameter model for test item 10 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

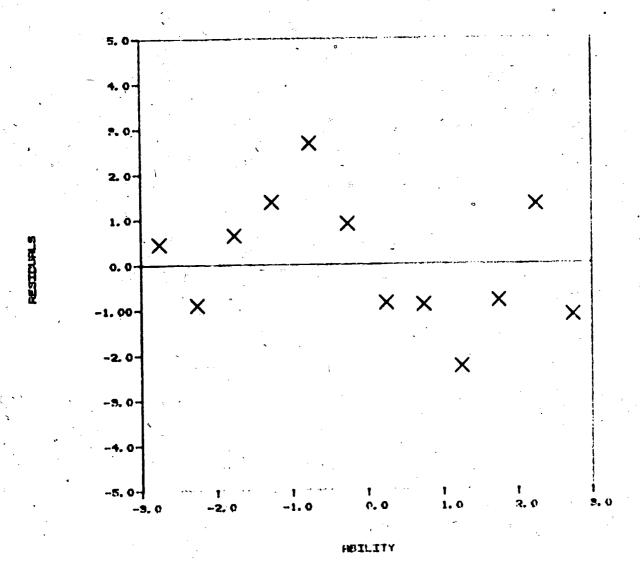


Figure 3.6.22 Standardized residual plot obtained with the three-parameter model for test item 36 from NAEP Math Booklet No. 1 (13 Year Olds, 1977-78).

Table 3.6.1

Analysis of Standardized Residuals with the Oneand Three-Parameter Logistic Models for Six 1977-78 NAEP Mathematics Booklets

NAEP Booklet	Logistic Model	0 to 1	rcent of R	esiduals 2 to 3	over 3
Booklet 1	· 1	35%9	21.5	17.3	25.3
(9 Year Olds)	. 3	66.7	24.4	6.7	2.3
Booklet 2	1	37.1	25.3	13.8	23.8
(9 Year Olds)	3	67.4	24.7	5.7	2.2
Booklet 3	. 1	40.1	23.4	15.4	21.1
(9 Year Olds)	3	64.0	24.8	8.0	3.3
Booklet 1	1	40.7	22.1	16.5	20.7
(13 Year Olds)	3	65.4	25.1	7.8	1.7
Booklet 2	1	42.6	24.2	16.3	16.9
(13 Year Olds)	3	67.2	26.1	5.7	1.1
Booklet 3	1	34.3	24.5	17.5	23.7
(13 Year Olds)	, 3	61.0	26.8	. 8.2	4.0
`	25 17 17	•			<u> </u>

 $^{^{1}}$ At the 9 Year Old Level, there were 780 standardized residuals (65 test items x 12 ability levels). At the 13 Year Old Level, there were 690 standardized residuals (58 test items x.12 ability levels).

Table 3.6.2

Analysis of Standardized Residuals at Twelve Ability Levels with the Oneand Three-Parameter Logistic Models for Six 1977-78 NAEP Mathematics Booklets

	m			Samala.		,	-			bility	Level				•	t-	Total
RAEP * * * * * * * * * * * * * * * * * * *	Test Length	Statistic	Logistic Model	Sample Size	-2.75	-2.25	-1.75	-1. 2 5	75	25	. 25	. 75	1,25	1.75	2,25	2.75	(unweighted
Booklet-1 (9 year olds)	65	*	1 3	2495 2495	27 29	43 50	111 108	220 21 2	331 333	485 454	446 470	395 403	276 271	12 2 100	21 21	8 9	•
		Average Residual	1 3		.77	.99 .24	.89	.79 .12	.37		.14		26 48	39 36	11 32	10 16	.05
•	٠	Absolute Residual	1 3	40	1.75 .81	2.40 .90	2.82 1.02		2.35 1.00		1,62				1.19		2.13 .88
Booklet 2 (9 year olds)	75		1 3	2463 2463	10 23	46 64	. 1 1 6 89	2 ³⁴ 218	′334 346	437 417	474 497	397 403	272 230	87 107	. 39 34	7 6	. /
		Average Residual	1 3		.60 16	.74 — 14	.58 02	<u>.71</u> 34	28. .50	01 .19	02	14 18	02 23	.08	05 16	.02	.23
		Average Absolute Residual	1 3		1.55	2.42 .95	3,02 .83		1.02		1.59 1.04		2.75		1.31 .90		2.03 .90

Table 3.6.2 (continued)

			looteria	Sample		•	1000			bility	Level				3		Total
NAEP Booklet	Test Length	Statistic	Logistic Model	Size	-2.75	-2.25	-1.75	-1.25	75	25	. 25	. 75	1.25	1.75	2.25	2.75	(unweighted)
Booklet 3 (9 year olds)	68		1 3	2438 2438	29 28	44 62	120 108	174 177	326 283	410 438	533 319	446 410	186 219	89 88	44 29	9 9	
	: *	Average Residual	1 3		. 84 . 36	.57 .36	.60 02		01 55		.04 .01	.30 .37	.09 .39	09 .34	22 .09	03 .09	.19 .06
A		Average Absolute Residual	1 3		2.20 .94	2.13 .91	3.04		2.07 1.03		2.06	2.61	1. 9 7 .90	1.49	1.23	.64	1,97 .95
Booklet 1 (13 year olds)	. 58	•	1 3	2422 2422	14 24	5,4 50	91 . 11 <u>4</u>	224 194-			467_ 509	339 368		102 90	44 32	3 11	•
(15 year olds)	<u>.</u>	Average Residual			67 02	.88	.66 .06			.25	.40 20		12 59	.07 03	.11 - ₀ 12	09 43	.28 10
3		Average Absolute Residual	1 4		1.76 1.27		2.74 .97		2.20 .76	1.63	1.68 79		2.06 1.07		1.30		1.92 .93

Table 3.6.2 (continued)

NAEP	Test	1 .	Logistic	Sample	•		,			bility	Level			- ;	-	5	Total
booklet	Length	Statistic	Model ,	Size	-2.75	- 2 .25	-1.75	-1.25	75	25	.25	. 75	1.25	1.75	2125	2.75	(unweighted
Booklet 2 (13 year olds)	62		1 3	2433 2433	20 15	39 45	118 121	241 230	308 334	447 429	463 440	`392 402	240 259	121 94,		10 11	
ø		Average Average	3.	· ·	.90 03	. 92 . 1·7	1.06	.67 .22	.14 .03				-,27 26				.26 03
	÷.	Absolute Residual	1 3		2.08 .76	1.90	2.98 .87			1.79 1.05			2.10			.73 .70	. 1.84
Booklet 3 (13 year olds)	73		2 1 3	2469 2469	12 24	38 a 53	96 106		40 0 328	540 462	403 499	341 393	237 212	120 106	51 38	8 8	
	. ,	Average Residual Average	, 1 3	•	.45	.74 .08	.78 .04	. 56 . 27		.31			01 34				. 29 03
	٠.	Absoluté Résidual	1 3	i i	1.50 1.25	2.42 .94	2.97 1.29						2.47 1.04			. 84 . 6 8	2.19 1.00

Table 3.6.3

NAEP Math Booklet No. 1

Basic Item Statistical and Classificatory Information

(9 year olds, 1977-78)

1 1	27 0.62 73 0.60 27 0.85 50 2.24 28 1.57	1 Item Difficulty .55 .47 .55 .91 .89	Ttem 2 Discrimination ³ .62 .69 .65 .34 .39	Content Category ⁴ 3 3 1 2 2	Format ⁵ 1 1 1 1
2 1. 3 1. 4 3. 5 2. 6 3. 7 2. 8 0.	73 0.60 27 0.85 50 2.24 28 1.57	.47 .55 .91 .89	.69 .65 .34	3 1 2	1 1
2 1. 3 1. 4 3. 5 2. 6 3. 7 2. 8 0.	73 0.60 27 0.85 50 2.24 28 1.57	.47 .55 .91 .89	.65 .34	1 · 2	1 1 1 .
3 1. 4 3. 5 2. 6 3. 7 2. 8 0.	27 0.85 50 2.24 28 1.57 26 1.08	.55 .91 .89	. 34	_	1 1 .
4 3. 5 2. 6 3. 7 2. 8 0 .	50 2.24 28 1.57 26 1.08	.91 .89		_	1 .
5 2. 6 3. 7 2. 8 0	28 1.57 26 1.08	.89	.39	. 2	
7 2 2 8 0.	· ·	47.		•	1
7 2 2 8 0.	· ·	./0	.33	2	. 1
8 0.	00 0.88	.12	.37	Ž	2
		.33	. 56	2 .	2
	73 0.63	.46	.47	2	1
10 1.		. 39	.65	5	1
11 2.	18 0.,79	.89	.77	. 4	2
	03 / 1.01	.84	.75	4	2
	45 0.84	.88	.80	4	2 2
-	35 1.73	.73	. .76	4	2
	61 1.06	.81	.80	4	2
1	-	a		ਹ	
16. 3.	05 2.16	. 75	.79	4	2
	20 1.00	.46	3 5	1	1
	49 · 0.59	.81	.59		2
	86 . 1.30°	.85	.51	2	1
	85 0.73	.63	.63	4.	2
21 2.	35 0.48	.40	.75	4	2
	2.6 0.74	.20	.60	5	1
	84 0.65	.53	.62	1	1 .
•	50 0.58	.82	.79	4	2
$-\frac{27}{25}$ \ 1.	,	. 40	.68	4	2

 $¹_{1-p} \equiv \text{one-parameter logistic model}$; $3-p \equiv \text{three-parameter logistic model}$.

 $^{^2}$ Irom difficulty \equiv proportion of examinees in the NAEP sample answering the test item correctly (N = 2495).

 $^{^3}$ Item discrimination Ξ biserial correlation between item and the total score.

 $^{^4}$ Content Categories: 1 - Story Problems, 2 - Geometry, 3 - Definitions, 4 - Calculations, 5 - Measurement, 6 - Graphs and Figures.

Format: 1 - multiple choice, 2 - open response.

Table 3.6.3 (continued)

NAEP Math Booklet No. 1

Basic Item Statistical and Classificatory Information
(9 year olds, 1977-78)

Test Item	Standardized 1-p	Residuals ¹	Item 2 Difficulty	Item Discrimination	Content 4 Category	Format 5
26	2.64	0.88	49	.77	. 4	2
27	1.85	0.86	.68	•71	4	2
2.8	1.08	. 0.94	.36	.63	4	2
29	1.41	0:40	.77	. 69	4	2
30	2.67	0.88	.68	.78	. 4	2
31	1.92	0.99	.69	.72	6	1
32	4.48	1.33	.03	.14	3	1
33	4.92	0.69	19	.14	3	1
34	1.12	0.92	.64	.54	5 -	1
35	0.92	1.13	.80	.62	6	1
36	41	1.10	·.65	.67	4	. 2
37	1.25	0.56	.09	.60	4	2
38	1.33	0.84	. 94	.43	3	1
39	3.53	0.72	. 20	.26	1	1
40	4.00	0.58	.17	; 22	4	1
41	2.26	1.12	.20	.73	1	2
42	0.69	0.38	.17	. 57	4	2
43	1.22	0.58	.02	.61	4	2
44	1.10	1.10	.01	.59	4	2
45	3.55	0.87	. 29	.28	5	2
46	1.72	0.60	. 36	.51	4	1
47	2.63	1.11	.54	.40	5	1
48	1.18	0.61	.83	· . 67	6	1 "
49	2.36	0.93	.29	.50	6	1
50	4.38	0.47	.66	.27	1	1
51	4.18	0.69	.25	.21	1	. 1
52	5.51	- 0.88	.35	.19	s 2	1
53	3.19	Ö.66	.09	.22	2 .	1 .
54	2.67	0.97	.09	.31	2 .	1
55	0.58	0.65	.01	.49	6	2
56	1.43	0.68	.12	.64	1	2
57	1.51	1.16	.48	.53	2 '	1
58	1.11	0.91	. 24	.53	2	1
59	2.32 🗼	0.44	.28	.48	2.	·1
60	0.99	0.76	.21	.51	1	. 2
61	1.54	0.92	.10	.53	- 5	2 .
62	1.46	1.47	.85	.60 •	3 .	2 2
63	1.53	, 1.17	.48	67	4	2
64	1.16	0.53 .	. 35	.49	2	1
65 -	3:71	0.94	~ .27·	. 24	3	. 1

Table 3.6.4

NAEP Math Booklet No. 2
Basic Item Statistical and Classificatory Information
(9 year olds, 1977-78)

							:
Test	Standardized 1-p	Residuals ¹	Item Difficulty ²	Item Discrimination ³	Content Category ⁴	Format ⁵	_
1	3.27	0.67	.77	.31	3	1	
2	3.20	0.64	.78	.31	. 3	1	
3	0.73	0.90	.92	.60	. 4	2	
4	1.50	0.77	.87	.70	4	2	
5	1.38	1.27	.88 ί	.65	4	2	
6	1.35	1 . 22	.78	.67	4	2	
7	1.67	0.96	.86	.71	' 4	2	
8	1.44	0.88	.82	.70	4	2	
. 9	2.39	1.16	.59	.76	4	2	
10	2.57	0.79	.60	.76	4	2	•
11	2.87	0.65	.50	.78	4	2	
. 12	2.34	0.79	.50	.74	4	2	7
13	0.94	0.59	.08	. 46	2	1 1	
14	1.00	0.83	.37	. 58	1		7
15	1.19	1.31	.73	. 57	6	1	•
16	1.31	0.71	.57 +	.63	6	1	
17	1.03	0.77	.74	.64	4	2 2 2 1	
18	1.06	0.73	.73	. 65	4	2	-
19	1.59	1.06	•56	.68	4	. 2 .	
20	1.31	0.99	.14	.56	1	1	
2,1	1.77	0.55	.63	.71	. 6	1	
22	2.17	1.01	. 57	.72	6	1	
23	2.26	1.06	.39	. 71	6	1 1	
24	1.18	0.67	. 96	.68	3		
25	0.83	0.70	.96	. 60	· 3 .	1 .	
. 23	3.33				`		_

 $¹_{1-p} \equiv \text{one-parameter logistic model}; 3-p \equiv \text{three-parameter logistic model}.$

Format: 1 - multiple choice, 2 - open response.

 $^{^2}$ Item difficulty \equiv proportion of examinees in the NAEP sample answering the test item correctly (N = 2463).

 $^{^3\}text{Item}$ discrimination Ξ biserial correlation between item and the total test score.

 $^{^4}$ Content Categories: 1 - Story Problems, 2 - Geometry, 3 - Definitions, 4 - Calculations, 5 - Measurement, 6 - Graphs and Figures.

Table 3.6.4 (continued)

NAEP Math Booklet No. 2
Basic Item Statistical and Classificatory Information
(9 year olds, 1977-78)

Test Item	Standardized 1-p	Residua.s ¹	Item Difficulty ²	Item Discrimination ³	Conte n t Category ⁴	Format ⁵
26	1.10	0.69	.97	.68	3 .	1
27	0.67	0.69	94	.52	3	1
28	0.74	0.84	.92	.56	3	1
29	4.80	0.70	.19	.18	5	1
30	2.87	0.77	.20	.32	. 5	1:
31	1.03	0.91	. 25	.60	4	. 2
32	* 1.67	0.96	.27	.66	1	2
33	1.87	1.03	. 49	.69	3	2 2
34	1.83	1.09	•52 ·	.69	3 3	2
35	1.66	1.13	.47	.67	3	2
36	3.16	0.82	. 39	.34	2	1
37	0.63	0.69	. 84	• 60	2	1
38	1.20	0.61	.19	.47	2	1 1 2
39	4.43	1.18	.25	.21	1	. 1
40	1.72	0.94	.63	.70	4 .	2
	. 2.20	0.66	.40	.73	4	2
41	2.29	0.74	.72	.78	4	2 / 2
42	2.58	1.09	.56	.81	4	2
43	2.98			.79	4	2.
. 44	2.58	0.65 0.73	.74 🍇 .46	.75	4	2 2
45	2.40	0.73	•40			
46	2.44	0.88	.19	.37	2	1
47	1.51	0.81	.90	.42	1	2 2 2
48	1.09	0.54	.75	.66	3	2
49	1.11	1.23	. 50	.63	3 ,	2
. 50	0.60	0.75	.41	.55	3	1
51	3.39	0.83	.80	.27	5 <u>,</u> 3	1
52	2.29	0.76	.71	.76	3	1
53	1.96	0.45	.50	.64	3	· 1
54	2.67	1.43	.44	.45	3	1
55	3.89	0.64	.25	.25	1	1
56	2.25	0.89	.54	.43	1 .	. 1
56 57	2.61	0.52	. 37	.41	1	1
	0.67	0.56	.66	.60	1	1
58 50	1.14	0.80	.50	.61	1	1
59 60	1.40	1.25	23	.52	4	1
60	1.40					

Table 3.6.4 (continued)

NAEP Math Booklet No. 2

Basic Item Statistical and Classificatory Information
(9 year olds, 1977-78)

Test Item	Standardized	Residuals ¹ 3-p	Item Difficulty ²	Item Discrimination ³	Content Category ⁴	Format 5
61	4.08	5.44	.88	.13	2	1
62	3.07	0.73	.44	.35	2	1
63	4.76	0.56	.21	.16	3	1
64	5.88	0.84	.14	.06	3	1
65	4.63	0.54	. 25	.19	3 **	1
66	0.81	0.66	.12	.45	4	2
67	1.68	1.78	.26	.50	1	2
68	0.82	0.48	.01	.54	2	2
69	2.15	1.05	. 49	.42	. 1	· · · 1
70	2.63	0.94	.08	.22	1	2
71	1.65	0.67	.06 .		2	2
7.2	1.21	0.63	.04	58	4	2
73	1.76	0.83	.34	.44	5 '	2
74	0.59	0.99	.39	.57	. 6	2
75	2.66	0.74	. 34	.35	5	1

Table 3.6.5

NAEP Math Booklet No. I Basic Item Statistical and Classificatory Information (13 year olds, 1977-78)

Test Item	Standardized	Residuals ¹ 3-p	Item Difficulty ²	Item Discrimination ³	Content Category ⁴	Format ⁵
	1.47	.84	.85	.70	1	2
2	.68	.44	.93	.61	3	1
.3	.71	.85	.95	.62	3	ī
4	3:11	1.94	.52	.81	5	2
4 5	1.74	.89	.65	.72	4	1
6.	1.80	.96	.36	.48	2 ·	. 1
7	1.70	.64	.40	°.49	2	1
8	3.80	1.47	.70	. 29	2	· 1
9 .	2.13	.72	.30	.43	1	1
10	1.59	. 64	.81	.72	. 5	1
11	1.47	.86	.95	.75	4	2
12	1.47	1.31°	.94	.74	4	2 .
13	1.61	1.11	.93	. 75	4	2
14	1.21	. 77	.92	.70	4	2
15	. 97 ,	.88	.89	.66	4	. 2
16		1.39	.88	.58	٠ 4	. 2
17	1.86	.98	.73	.47	5	1
18	.96	.83	.14	. •54	1	2
19	2.42	1.42	.62	.75	4	2
20	` 3.30	.42		.84	4	2
21	3.08	.53	.56	.82	4	2
22	.68	.48		.46	3	. 1
23	2.85	.71	.36	.38	3	1
24	1.88	.89	.33	.48	3 .	1
25	1.15	.98	.52	.64	1	2

 $l_{1-p^{-}}$ one-parameter logistic model; 3-p = three-parameter logistic model.

^{| | |} multiple-choice, 2 = open response.

 $^{^2} Item$ difficulty Ξ proportion of examinees in the NAEP sample answering the test item correctly (N $^{\approx}$ 2500).

 $_{\rm J}$ $^3{\rm Item}$ discrimination Ξ biserial correlation between item and the total test score.

¹⁴Content Categories:

^{1 =} Story Problems, 2 = Geometry, 3 = Definitions, 4 = Calculations, 5 = Measurement,

 $^{6 \}equiv Graphs$ and Figures.

⁵Format:

NAEP Math Booklet No. 1
Basic Item Statistical and Classificatory Information
(13 year olds, 1977-78)

Test Item	Standardized 1-p	Residuals ¹ 3-p	Item Difficulty ²	Item Discrimination ³	Content Category ⁴	Format ⁵
26	. 2.32	.46	.73	.41	2	1
27	1.06*	.81	.10	. 51 .	2	• • 1
28	4.62	.77	.22	.18	2	2 .
29	.92	.77	.18	. 57.	5	2
30 .	1.92	.83	.46	60	1	1
31	. 80	.73	.74.	.64	2	1
32	2.06	1.56	. 58	. 64	1	1
33 .	1.13	.64	.42	.49	1	1 .
34	.75	.56	.96	.46	2 2	1
35	2.36	1.87	.66	.44	2	1
36	7:08	1.19	. 21	01	1	1
37	1.36	.66	.37	. 47	• 2	1
38	2.63	.67	.78	.80	3	1
39	3.37	.73	.70	.36	<u></u> 3	1
40	1.72	.85	• 66	.70	1	1
41	1.16	•96	.27	.62	. 3	1
42	.60	.93	.69	. 60	2	1 .
43	. 87	.81	.78	.60	2	1
44	1.58	1.93	.68	. 59	4	. 2
45	1.16	1.62	. 45	. 6,1	4	2
46	2.01	.90	.34	.63	1	1
47	4.63	.98	.11	10	2	1
48	1.69	1.11	.15	.48	3	1
49	1.20	.83	.49	. 64	4 .	2
50	.77	.80	.84	.62	· 1	1 .
51	3.30	. 57	.18	.27	1	1
52	5.03	.96	.60	. 26	1,	, 1
53	1.37	.31	.82	.45	· 2	1 .
54	1.19	1.19	.73	.63	4	[*] 2 . 2
55	1.83	.83	. 25	.68	6	2
56	. 49	.74	.72	•59	1	1
57	2.48	.95	.31	.73	5	2
58	.83		.74	.62	4	2
,	•05	- <i></i>		ð		·

Table 3.6.6

NAEP Math Booklet No. 2
Basic Item Statistical and Classificatory Information
(13 year olds, 1977-78)

Test.	Standardized 1-p	3 - p	Item Difficulty ²	Item Discrimination ³	Content Category ⁴	Format ⁵
1	1.01	1.06	.58	.60	4	2
2	1.13	0.85	.48	.67	4	2
. 3	2.39	1.74	.65	.53	4	2
4	1.92	0.72	.69	.50	1	1
* 5	1.49	0.86	. 57	.69	3	1
6	0.87	1.03	.18	. 5 5	2	2
7	1.00	1.15	.51	.63	5	2
8	0.56	0.53	.96	.58	ĺ	
9	2.25	0.52	.85	.84	4	2
10	2.33	0.62	.84	.84	4	2 2 2
11	2.20	1.31	.82	.84	4	2
12	2.11	0.56	.79	.82	4	2
13	0.93	0.67	.92	.68	2	1
14	2.17	0.92	.42	.48	4	1
15	1.20	1.02	.30	.61	2	1 /
16	0.71	0.61	.89	.66	4	2
17	0.79	0.55	.85	. 69	4	2 .
. 18,	0.93	0.51	.86	.70	4	. 2
19	1.00	0.77	.95	.50	4	. 2
20	0.99	0.94	.95	.68	4	2
21	1.13	0.76	.95	.56	4	2
21 2 2	6.17	1.14	.06	 07	2	1
22	1.77	0.66	.38	.74	S Δ	2
23 24	1.57	0.71	.45	.74	4	2
25	1.12	1.20	.61	.63,	- 4	2

l_{1-p} ≡ one-parameter logistic model; 3-p ≡ threé-parameter logistic model.

Format: 1 - multiple choice, 2"- open response.

 $^{^2}$ Item difficulty \equiv proportion of examinees in the NAEP sample answering the test item correctly (N = 2433).

 $^{^3}$ Item discrimination Ξ biserial correlation between item and the total test score.

⁴Content Categories: 1 - Story Problems, 2 - Geometry, 3 - Definitions, 4 - Calculations, 5 - Measurement, 6 - Graphs and Figures.

Table 3.6.6 (continued)

NAEP Math Booklet No. 2
Basic Item Statistical and Classificatory Information
(13 year olds, 1977-78)

Item	Standardized 1-p	Residuals ¹ 3-p	Item Difficulty2	Item Discrimination ³	Content Category4	Format ⁵
26	3.45	1.00	.88	.24	2	1
27	3.63	0.89	•55	.36	2	1
28	3.24	1.48	.24	.49	1	2
. 29 "	0.62	0.90	.91	.59	1 .	1 .
30	1.07	1.25	.16	. 54	1	2
31	1.54	0.67	. 30	.67	3	1
32	3.03	0.99	.67	.44	, 3	1
33	1.05	0.33	.9 5	. 77 .	3 ,	1
34	0.74	0.62 -	.86	.65	1	1
35	1.02	1.16	.22	.57	1	2
36	0.74	0.55	.59	.64	. 6	1
⁷ 37	2.20	0.65	.67	.77	6	1
38	1.53	0.70	. 34	.61	6	. 1
39	0.62	0.60	.50	.64	. 4	2
40	. 1.46	0.76	.45	.64	1	, 1
41	0.85	0.70	. 88	.69	4	2
42	1.80	1.69	.78	.73	4	2
43	0.81	0.79	.78	.59	1	ī
-44	3.61	0.80	.73	.37	2	ī
45	1.64	0.76	.66	.53	1	1
46	1.08	0.77	.81	.68	1	1
47	1.36	0.62	.80	.76 .	ī	ī·
48	1.24	0.84	.26	.65	3	2
49	1.83	0.36	.17	.68	3	2
50	1.51	1.06	.63	.72	3	Ž .
51	6.21	1.28	.32	.17	2	1 .
52	2.99	0.65	.17	.32	2	
² 53	2.13	0.51	.38	.75		·
54	1.23	0.69	.86	.55	1 2	2 1 1
					2	1
55	1.05	0.53	.47	.56	2	1 .
56	2.41	0.89	.50	.80	1	2
57	6.38	0.76	.13	.10	1	1
58	2.53	0.78		.56	6	1 1 1 1
5 9	3.57	1.19	.19	.45 **	6	1
60	1.12	0.64	. 75	.56	. 6	*
61	1.06 م	0.92	.64	58	4	2
62	1.71	0.83	.29	70	4	2

Our initial preliminary studies are reported in Figures 3.6.23 to 3.6.28. Figure 3.6.23 shows the relationship between one-parameter model residuals and classical item difficulties. The outstanding features are the large size of the residuals and the tendency for the most difficult items to have the highest residuals. Possibly this latter problem is due to the guessing behavior of examinees. In a similar plot with three-parameter model residuals shown in Figure 3.6.24, the standardized residuals are substantially smaller and it appears that by estimating item pseudo-chance level parameters, the tendency for the highest residuals to be obtained with the most difficult items is reduced.

Figure 3.6.25 provides a plot of one-parameter model standardized residuals and classical item discrimination indices for four of the Math Booklets combined. A strong curvilinear relationship is evident. Items with relatively high or low classical discrimination indices have the highest standardized residuals. Figure 3.6.26 provides the same plot using three-parameter model standardized residuals. The curvilinear relationship disappears. Substantially better fits are obtained when variations in discriminating powers of test items are handled in the chosen model.

Figures 3.6.27 and 3.6.28 provide comparable information to the previous two figures except that the latter two figures use the information from a single test booklet. The trends in the results are identical.

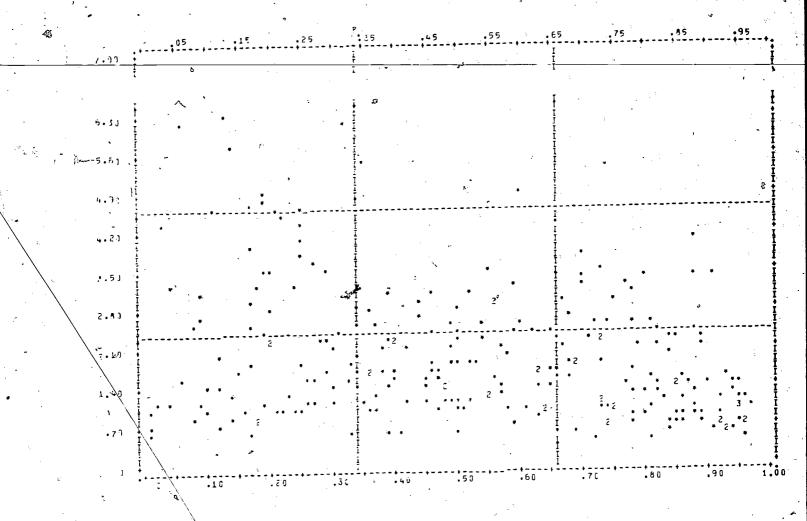


Figure 3.6.23. Scatterplot of one-parameter standardized residuals and item difficulties for 9 and 13 Year Old Math Booklets Nos. 1 and 2.

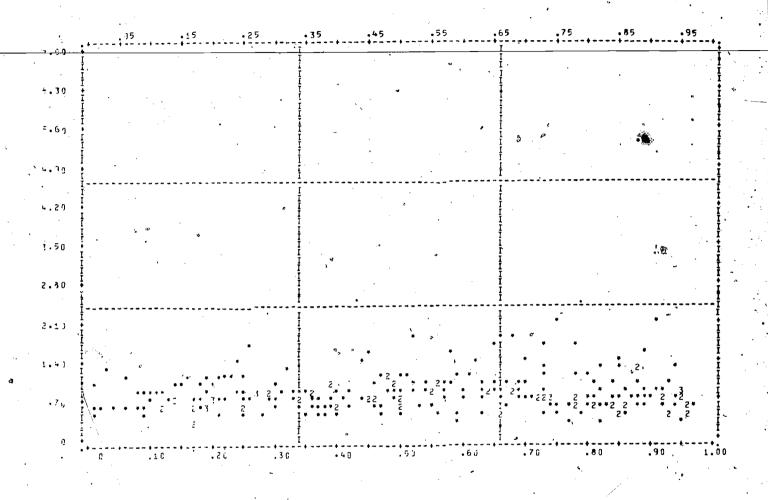


Figure 3.6.24. Scatterplot of three-parameter standardized residuals and item difficulties for 9 and 13 Year Old Math Booklets Nos. 1 and 2.

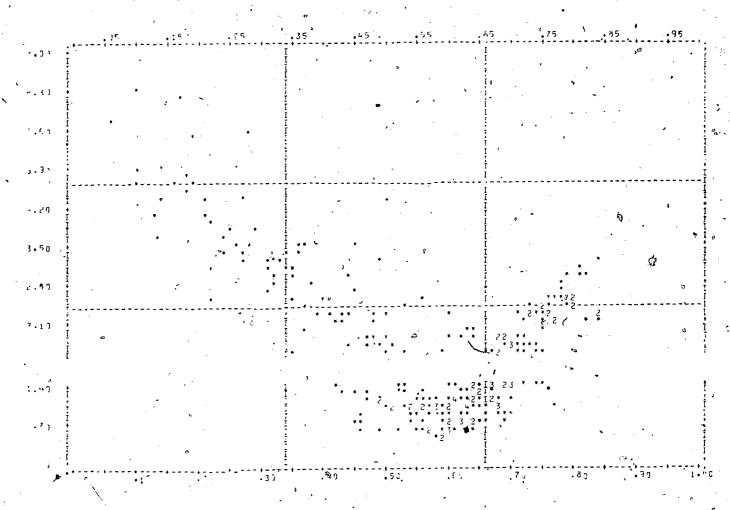


Figure 3.6.25. Scatterplot of one-parameter standardized residuals and item discrimination indices for 9 and 13 Year Old Math Booklets Nos. 1 and 2.

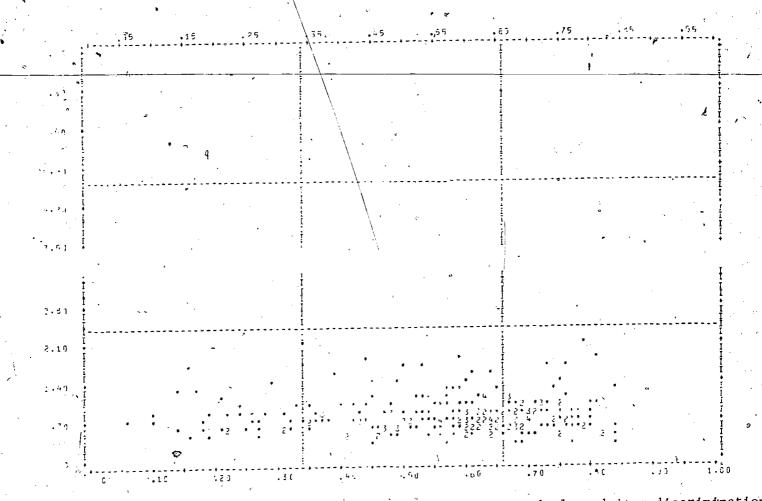


Figure 3.6.26. Scatterplot of three-parameter standardized residuals and item discrimination indices for 9 and 13 Year Old Math Booklets Nos. 1 and 2.

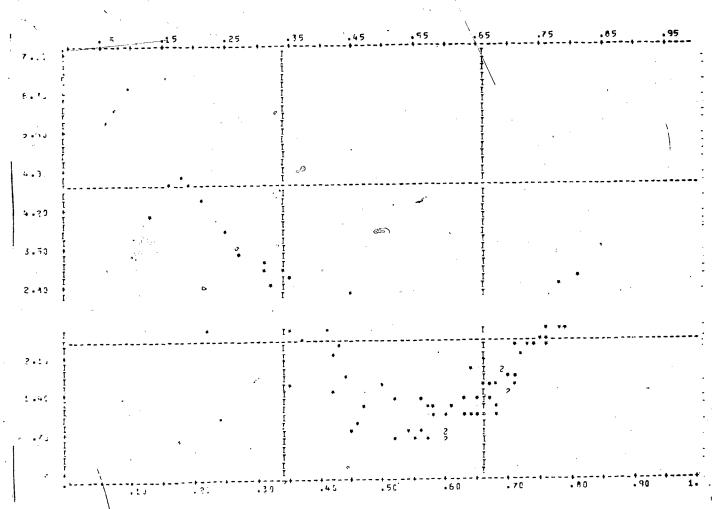


Figure 3.6.27. Scatterplot of one-parameter standardized residuals and item discrimination indices for 9 Year Old Math Booklet No. 2.

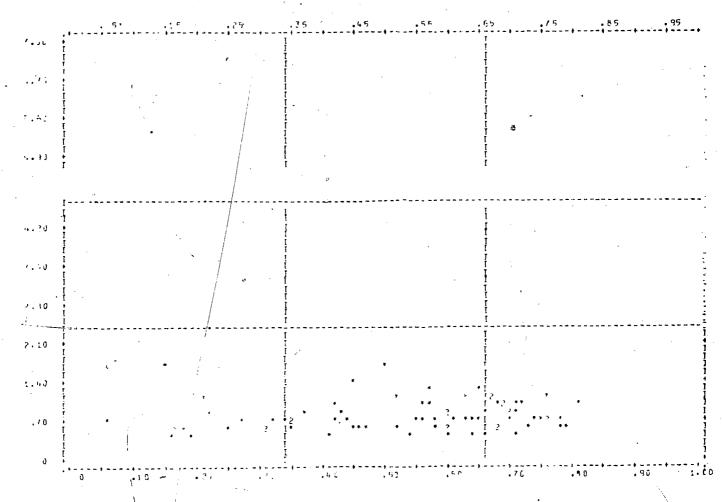


Figure 3.6.28. Scatterplot of three-parameter standardized residuals and item discrimination indices for 9 Year Old Math Booklet No. 2

These initial analyses were encouraging because they provided several insights into possible reasons for item misfit. Next, a more comprehensive analysis of the test items was initiated. Seven different analyses were carried out on four of the test booklets. In addition, the analyses were carried out on a combined set of Math Booklets.

Math Booklet	Tables
No. 1, 9 Year Olds	3.6.7 to 3.6.13
No. 2, 9 Year Olds	3.6.14 to 3.6.20
No. 1, 13 Year Olds	3.6.21 to 3.6.27
No. 2, 13 Year Olds	3.6.28 to 3.6.34
Combined	3.6.35 to 3.6.41

By combining booklets and obtaining more test items it was possible to more clearly study the trends in the results.

Since the trends in all of the analyses at the Math Booklet level are the same, only the results for the combined Math Booklets will be discussed further:

Table 3.6.35

- Intercorrelations among five key variables.
- 1. There is a high negative correlation (r=-.61) between one-parameter standardized residuals and classical item discrimination indices. The result suggests that the poorest fitting items are the least discriminating. Perhaps this is due, in part, to examinee guessing behavior.
- The most difficult test items are the least discriminating (r=.41).
 Again, perhaps the result is due to examinee guessing on hard test items.
- 3. There is a substantial correlation (r=.49) between item format and classical item discrimination indices. Open-ended test items tend to have higher discrimination indices than do multiple-choice items. Again, it is noted that guessing is a factor in multiple-choice test performance but plays almost no part with open-ended test items.
- 4. The higher one-parameter model residuals are associated with the multiplechoice test items; the lower one-parameter model residuals are associated with the open-ended items.

¹This correlation is misleading because the actual relationship between the two variables is non-linear.

Table 3.6.7

Correlations Among Several NAEP Math Item Variables (Booklet No. 1, 65 Items, 9 Year Olds, 1977-78)

Variable	SR(1-p)	SR(3-p)	. \ p	r	F1
Item Order	.05	 19	46	32	06
Standardized		•			
Residual (1-p)	-	.16	11	60	 34
Standardized.	٠.				*
Residual (3-p)	,	*	.35	.03	.02
Item Difficulty (p)		•		.43	.02
Item Discrimination (r)					57
Format (F)					
·					

¹¹⁼Multiple-Choice; 2=Open-Ended.

Table 3.6.8

Association Between Standardized Residuals and NAEP Item Content Classifications (Booklet No. 1, 65 Items, 9 Year Olds, 1977-78)

	N 1		Standardized Residuals			
Content Category	Number of Items	l-p SR(≤1.0) (n= 8)	SR(>1.0) (n= 57)	$3-i$ $SR(\le 1.0)$ $(n=48)$	SR(>10) (n=17)	
- 1	10	20.0	80.0	90.0	10.0	
Story Problems	10	20.0		,,,,		
Geometry	14	14.3	85.7	64.3	35,7	
Definitions	7	0.0	100.0	71.4	28.6	
Calculations	23	8.7	91.3	69.6	30.4	
Measurement	6	0.0	100:0	83:3	16.7	
Graphs and	5	40.0	60.0	80.0	20.0	
Figures '			, · · .		V .	
		x^{2} = 6.25		$\chi^2 = 2.63$		
		d.f.= 5	p= .282	d.f.=5	p= .757	

. Table 3.6.9

Association Between Standardized Residuals . and Item Formats

(Booklet No. 1, 65 Items, 9 Year Olds, 1977-78)

T	Standardized	l-p kesults		3-p Results	
Format ,	Residuals		% 	N	%
				•	
Multiple-Choice	SR(≤1.0)	2	3.1	26	40.0
	SR(>1.0)	32	49.2	8	.,.12.3
	*			. ,	
×		1.			/
Open-Ended	$SR(\leq 1.0)$	^ 6	9.2	22	33.8
d	SR(>1.0)	25	38.5	9	13./6
1		» ≯ ² = 1.	62	$x^2 = .0$)49
		d.f.= 1	p= .203	d.f.= 1	p = -8

Table 3.6.10

Association Between Standardized Residuals and Item Difficulties
(Booklet No. 1, 65 Items, 9 Year Olds, 1977-78)

Difficulty Level	ı e	Standardized Residuals	1-p R	esults %	3-р ў N	Results %
			*	<u> </u>		 .
llard (p<.5)	• •	SR(≤1.0)	4	. 6.2	32	49.2
		SR(>1.0)	33	50.8	5	7.7
Easy (p≥.5)	·	SR(≤1.0)	4	6.2	16	24. 6
		SR(>1.0)	24	36.9	12	18.5
		· ·	X ² = .1	.02	$\chi^{2} = 5$.66
			d.f.= 1	p=.967	d.f.=1	p= :017

Table 3.6.11,

Association Between Item Formats and Item Difficulties (Booklet No. 1, 65 Items, 9 Year Olds, 1977-78)

Difficulty Level	Format	N	4/	
,				·
Hard (p<.5)	Multiple-Choice	20 -	30.8	
•	Open-Ended	17	26.2	
			. 1	
· ·			0.7 5	
Easy (p≥.5) ·	Multiple-Choice	14	21.5	
	Open-Ended	14	21.5	•
	•	λ'= .(005	e e
		d.f.= 1	p= .942	

Table 3.6.12

Descriptive Statistical Analysis of Standardized Residuals (Booklet No. 1, 65 Items, 9 Year Olds, 1977-78)

n.cc: 1	Number		1-p R	1-p Results		3-p Results	
Difficulty Level	Format .	of Items	<u>X</u> ·	SD	$\frac{\overline{X}}{X}$	SD	
4							
Hard (p<.5)	Multiple-Choice	20	2.84	1.31	.78	.23	
	Open-Ended	17	1.55	. 79	.80	23	
•	} :		•			• •	
•					<u> </u>	-	
Easy (p≥.5)	Multiple-Choice	14	1.98	1.09	1.03	.46	
·	Open-Ended	14	1.95	.74	1.01	.48	

Table 3.6.13

Relationship Between Item Discrimination Indices and Standardized Residuals
(Booklet No. 1, 65 Items, 9 Year Olds, 1977-78)

Mode1	Standardized Residuals	01 to .30	Discriminati .31 to .50	on Indices .51 to .70	.71 to 1.00
		(10)1	(13)	(29)	* (13)
1-р	0.00 to 1.00	0.0	7.7	24.1	0.0
•	1.01 to 2.00	0.0	30.8	72.4	1 5.4
	over 2.00	100.0	61.5	3.4	84.6
		$X^{2} = 42.24$ Eta=.743	d.f.= 6	p=.010	
	e e e e e e e e e e e e e e e e e e e				
•••	e se e e e e e e e e e e e e e e e e e			: *	
3-p	0.00 to 1.00	90.0	69.2	75.9	61.5
	1.01 to 2.00	10.0	23.1	24.1	30.8
•	over 2.00	0.0	7.7	0.0	7.6
		$\lambda^2 = 4.76$	d.f.= 6	p= .575	
		Eta= .231		•	

 $^{^{\}rm l}\,{\rm Number}$ of test items appear in brackets.

Table 3.6.14

Correlations Among Several NAEP Math Item Variables
(Booklet No. 2, 75 Items, 9 year Olds, 1977-78)

Variable	SR(1-p)	SR(3-p)	p	r\	Fl
Item Order	.19	.08	51	44	09
Standardized Residual (1-p)		.17	26	60	27
Standardized Residual (3-p)			.15	19	01
Item Difficulty (p)				.40	.03
Item Discrimination (r)	· ·				.49
Format (F)				·	

ll=Multiple-Choice; 2=Open-Ended.

Table 3.6.15

Association Between Standardized Residuals and NAEP Item Content Classifications (Booklet No. 2, 75 Items, 9 Year Olds, 1977-78)

			Standardize	ed Residuals	/
•	Number	1-1) *	3-p	
Content	of	SR(≤1.0)	SR(>1.0)	SR(≤1.0)	SR(>1.0)
Category	Items	(n= 12)	(n= 63)	(n= 57)	(n= 18)
					>
Story Problems	13	15.4	84.6	76.9	23.1
· .		!	- ′	•	
Geometry	9	33.3	66.7	88.9	ļ1.1
\			Q	-	
Definitions	19	21.1	78.9	73.7	26.3
-				•	
Calculations	23	8.7	91.3	73.9	26.1
er en	٠.	İ			
Measurement	5 .	0.0	100.0	100.0	0.0
				·	
Graphs and					
Figures	6	16.7	83.3	50.0	50.0
•			••		
		$\chi^2 = 4.24$		x· = 4.74	
•		d.f.= 5	p= .515 .	d.f.= 5	p= '449
		3.1.	· · · · · · · · · · · · · · · · · · ·		F • ¬¬>

Table 3.6.16 Association Between Standardized Residuals and Item Formats
(Booklet No. 2, 75 Items, 9 Year Olds, 1977-78)

Format	Standardized Residuals	1-p N	Results . %	3 -р N	Results %
	, ,	1. 1.		0	
Multiple-Choice	SR(≤1.0)	8	10.7	32	42.7
	SR(>1.0)	32	4.2.7	* * *	10.7
		•	•	•	·
Open-Ended	SR(≤1.0)	- 4	5.3	25	33.3
•	SR(>1.0)	. 31	41.3	. 10	13.3
a de la companya de l		χ ² =	.482	$\sim \chi^2 = .$	3 58
		d.f.=	1 p= .4	87 d.f.=1	p= •55

Association Between Standardized Residuals and Item Difficulties
(Booklet No. 2, 75 Items, 9 Year Olds, 1977-78)

Difficulty Level	·.	Standardized Residuals	1- N	p Results %	3-p F	Results .
Hard (p<.5)	.0	SR(≤1.0)	6	8.0	31	41.3
o		SR(>1.0)	34	45.3	9	12.0
Easy (p≥.5)		SR(≤1.0)	6	8.0	26	✓ 34.7 °
· ,	•	SR(>1.0).	29	38.7	9	12.0
•		•	, X ²	= 0 .	x ² = .	003
		Ä	d.f.	= 1 p=1.0	0 d.f.=1	p=.957

Table 3.6.18

Association Between Item Formats and Item Difficulties

(Booklet No. 2, 75 Items, 9 Year Olds, 1977-78)

Difficulty Level			g,	. ,
	Format	N	%	
Hard (p<.5)	Multiple-Choice	23	30.7	
	Open-Ended	. 17	22.7	\
· ·		•		
Easy (p≥.5)	Multiple-Choice	17	22.7	
	Open-Ended	18	24.0	•
		$\chi^2 = .2$	293	
		d.f.=1	p=.588	

Table 3.6.19

Descriptive Statistical Analysis of
Standardized Residuals
(Booklet No. 2, 75 Items, 9 Year Olds, 1977-78

Difficulty	· ·	Number of /	1-p F	Results /	/ 3-p Results	
Level	Format	Items	X	SD /	\overline{X}	SI
ard (p<.5)	Multiple-Choice	23	2.69	1.47	.81	. 25
	Open-Ended	17/	1.67	.68	.89	.31
	•	<i>.</i>				
asy (p≥.5)	Multiple-Choice	17	1.81	1.12	1.04	1.15
	Open-Ended	18	1.72	. \$\d4	.91	.20

Table 3.6.20

Relationship Between Item Discrimination Indices and Standardized Residuals

(Booklet No. 2, 75 Items, 9 Year Olds, 1977-78)

Model	Standardized Residuals	01 to .30	Discriminati .31 to .50	on Indices .51 to .70	.71 to 1.00
	· .	(9)1	(18)	(34)	(14)
1-p	0.00 to 1.00	0.0	11.1	29.4	0.0
	1.01 to 2.00	0.0	27.8	70.6	14.3
	over 2.00	100.0	61.1	0.0	85.7
,		λ ² ₌ 50.77 Eta= .744	d.f.= 6	p=.000	
					ı.
3-p	0.00 to 1.00	77.8	83.3	73.5	71.4
	1.01 to 2.00	11.1	16.7	26.5	28.6
	over \2.00	11.1	0.0	0.0	0.0
		$x^{2}=8.78$	d.f.=6 °	p=.186	
		Eta= .114			

 $^{{}^{\}rm l}\,{\rm Number}$ of test items appear in brackets.

Table 3.6.21

Correlations Among Several NAEP Math Item Variables (Booklet No. 1, 58 Items, 13 Year Olds, 1977-78)

Wariable	SR(1-p)	SR(3-p)	р	r	F1
Item Order	.06	03	27	20	09
Standardized Residual (1-p)		.16	38	 57 ·	09
Standardized Residual (3-p)			03	.05	.27
Item Difficulty (p)			<u>, .</u>	.41	.08
Item Discrimination (r)			·		.46
Format (F)					

¹¹⁼Multiple-Choice; 2=Open-Ended.

Table 3.6.22

Association Between Standardized Residuals and NAEP Item Content Classifications
(Booklet No. 1, 58 Items, 13 Year Olds, 1977-78)

			Standardize	d Residuals	
	Number	. 1-	•	3-	
Content	of	$SR(\leq 1.0)$	SR(>1.0)	• $SR(\leq 1.0)$	SR(>1.0)
Category	Items	(n= 13)	(n=45)	(n=45)	(n=13)
			٠		
Story Problems	14	21.4	78.6	85.7	14.3
			:		
Geometry	14	28.6	71.4	85.7	14.3
ocometry.	_ ,	23.0	, _ ,	03.7	1,.3
	0	22.2		00.0	
Definitions	9	33.3	66.7	88.9	11.1
		•		Target States	•
Calculations	15	13.3	86.7	53.3	46.7
Measurement	. 5	20.0	80.0	80.0	20.0
	ø				
Charba and		•	,		
Graphs and Figures	· 1	0.0	100.0	100.0	0.0
		•			
	. •			, 4	
		. = 1.95		₹'= 7.10	
	•	d.f.= 5	p= .856	ā.r.= 5	p= .213

Table 3.6.23

Association Between Standardized Residuals and Item Formats

(Booklet No. 1, 58 Items, 13 Year Olds, 1977-78)

Format	Standardized	1-p Results	3-p Results
rormat	Residuals	N %	N %
•			• .
Multiple-Choice	SR(≤1.0)	9 15.5	31 53.4
	SR(>1.0)	27 46.6	. 5 8.6
•			
•			•
Open-Ended	SR(≤1.0)	4 6.9	14 ' 24.1
	SR(>1.0)	18 31.0	8 13.8
	,	$\lambda^{4}=.078$	$\chi^2 = 2.78$
		d.f.=1 p=.780	d.f.=1 p=.096
			,

Table 3.6.24

Association Between Standardized Residuals and Item Difficulties
(Booklet No. 1, 58 Items, 13 Year Olds, 1977-78)

Difficulty	Standardized	1-р.	Results	3-p 1	Results
Level	Residuals	N	%	N	%
Hard (p<.5)	SR(<u><</u> 1.0)	2	3.4	19	32.8
,	SR(>1.0)	20	34.5	3	5.2
•		•			
Easy (p≥.5)	SR(≤1.0)	11	19.0	26	44.8
	SR(>1.0)	25	43.1	10	17.2
	•	x [:] =2	.49	$\chi^{2} = .8$	362
		d.f.=1	p=.115	d.f.=1	p=.35

Table 3.6.25

Association Between Item Formats and Item Difficulties (Booklet No. 1, 58 Items, 13 Year Olds, 1977-78)

Difficulty Level	Format	N	° %	· ,
Hard (p<.5)	Multiple-Choice	15	. 25.9	
	Open-Ended	7	12.1	,
•	• •	•	ď	
		. •		
Easy (p≥.5)	Multiple-Choice	21	36.2	
	Open-Ended	15	25.9	n ; n
		$\chi^2 = .2$	2	
* - 5		. d.f.=1	p=.638	Market Ma

Table 3.6.26

Descriptive Statistical Analysis of
Standardized Residuals
(Booklet No. 1, 58 Items, 13 Year Olds, 1977-78)

		Number	1-р Ь	Results	3-p Results		
Difficulty Level	Format	of Items	·X	SD	X	SD	
Hard (p<.5)	Multiple-Choice	15	2.38	1.60	.84	.19	
	Open-Ended	7	1.88	1.33	.94	.31	
	¥				•		
Easy (p≥.5)	Multiple-Choice	21	1.72	1.21	.84	.38	
	Open-Unded	15	,1.73	.83	1.09	.45	

Table 3.6.27

Relationship Between Item Discrimination Indices and Standardized Residuals (Booklet No. 1, 58 Items, 13 Year Olds, 1977-78)

			- Marie - Angeles - Marie - Angeles - Marie -		man na man nasanan sa man mangkar na anisa dan manadanan sa man man man man man man man man man ma
Model	Standardized Residuals	01 to .30	Discrimination. 31 to .50	n Indices .51 to .70	.71 to 1.00
	ş ·	(6)1	(15)	(26)	(11)
1-p	0.00 to 1.00	0.0	13.3	42.3	0.0
¥ - 4	1.01 to 2.00	. 0.0	53.3	50.0	45.5
,	over 2.00	100.0	33.3	7.7	54.5
		$x^2 = 26.9$ Eta= .628	d.f.= 6	p=.000	
	•			4	
•	· · · · · · · · · · · · · · · · · · ·			• · · · · · · · · · · · · · · · · · · ·	•
3-p	0.00 to 1.00	66.7	86.7	80.8	63.6
• ·	1.01 to 2.00	33.3	13.3	19.2	36.4 ^t
	over 2.00	0.0	0.0	. 0.0	0.0
		$\chi^2 = 2.51$	d.f.=3	p=.474	
	~	Eta=.208	* .	•	

¹Number of test items appear in brackets.

Table 3.6.27

Correlations Among Several NAEP Math Item Variables (Booklet No. 2, 62 Items, 13 Year Olds, 1977-78)

Variable	SR(1-p)	SR(3-p)	P	r	F ¹
Item Order	.21	13	29	16	29
Standardized Residual (1-p)		.29	43	71	31
Standardized Residual (3-p)			24	-,29	.17
Item Difficulty (p)		<u>.</u> 1		.38	.07
Item Discrimination (r)		*			· .44
Format (F)					,
	4,				

11=Multiple-Choice; 2=Open-Ended.

Table 3.6.29

Association Between Standardized Residuals and NAEP Item Content Classifications (Booklet No. 2, 62-Items, 13 Year Olds, 1977-78)

	Number	1	Standardized) •
Content	of Items	SR(≤1.0) (n= 15)	SR(>1.0) (n='47)	SR(≤1.0) (n= 47)	SR(>1.0)
Story Problems	15	26.7	73.3	-80.0	20.0
Geometry	11	18.2	81.8	63.6	36.4
Definitions	. 7	0.0	100.0	85.7	14.3
Calculations	22	31.8	68.2	7.7 . 3 .	22.7
Measurement	į 1	100.0	0.0	0.0	100.0
Graphs and , Figures	. 6	16.7	83.3	83.3	16.7 -
		· x ² = 6.52		x ²⁼ 4.75	•
		5 = . آ . آبر	p= .259	d.i.= 5	p=.447

Association Between Standardized Residuals and Îtem Formats
(Booklet No. 2, 62 Items, 13 Year Olds, 1977-78)

Format			Standardized Residuals		1-p	Results %	3-p R	lesults
		ì		· ·		/.		-//
Multiple-Choice		1	SR(≤1.0)	·	5	8.1	. 26	41.9
The state of the s			SR(>1.0)	•	25	40.3	4	6.5
			. \$.			:	. •	
Open-Ended ~			3R(≤1.0)		10	16.1	21	33. 9
,			. SR(>1.0)	٠	22	Y-35.5	11	1 7.7
	,		•		$\chi^2 =$	1.09	$\chi^2 = 2$	67
· · · · · · · · · · · · · · · · · · ·			•		d.f.=	1 p= .29	7 d.f.=1	p= .102

Table 3.6.31

Association Between Standardized Residuals and Item Difficulties
(Booklet No. 2, 62 Items, 13 Year Olds, 1977-78)

Difficulty Level	Standardized Residuals		1-p	Res	ults .	3-p Re N	esults %	*
	•	18.4.	`	·	•	 ,	,	
Hard (p<.5)	SR(≤1.0)		2.	€.	3.2	1 .7	27.4	
/	SR(>1.0)	·	23		37.1	8	12.9	
Easy (p≥.5)	SR(≤1.0)	•	13		21.0	. 30	48.4	
÷	SR(>1.0)		24		38.7	7	11.3	
			$\chi^2 = 2$	4.60		$\chi^2 = .77$	7	
			d.f.=]	L	p=.032	d.f.=1	p= .°3	80

Table 3.6.32

Association Between Item Formats . and Item Difficulties (Booklet No. 2, 62 Items, 13 Year Olds, 1977-78)

Difficulty	€ .		· ·	
Level	Format	. N	%	
		/	· · · · · · · · · · · · · · · · · · ·	
Hard (p<.5)	Multiple-Choice	12	19.4	
	Open-Ended	13	21.0	,
		· u	,	
Easy (p≥.5)	Mulciple-Choice	· 18	29-0	
	Open-Ended	, 19	30.6	· ·
s and 4		$x^2 = 0$	• •	
·.		d.f.= 1	p=1.00	:

Table 3.6.33

Descriptive Statistical Analysis of
Standardized Residuals
(Booklet No. 2, 62 Items, 13 Year Olds, 1977-78)

D4 5 64 11	£ .	Number	1-p	Results	\	3-p I	Results
Difficulty Level	Format	of Items	\overline{x}	SD	\	\overline{X}	SD
					_		
Hard (p<.5)	Multiple-Choice	12	3.07	2.06		.87	. 24
7	Open-Ended	13	1.59	.72		.86	.31
		·		,			
:			ij D	.1			ė
Easy (p≥.5)	Multiple+Choice	18	1.71	1.04		.74	.16
	Open-Ended	19	1.36	62	•	.91	.38
}	٠ .		:		1	1	

Table 3.6.34

Relationship Between Item Discrimination Indices and Standardized Residuals
(Booklet No. 2, 62 Items, 13 Year Olds, 1977-78)

Model	Standardized Residuals	01 to .30	Discrimination.31 to .50	on Indices .51 to .70	.71 to 1.00
		(4) 1	(, 9)	(36)	(13)
1-p	0.00 to 1.00	0.0	11.1	² 38.6	0.0
	1.01 to 2.00	0.0	11.1	55.6	46.2
	over 2.00	100.0	77.8	5.6	5 3. 8
	e e	$\chi^2 = 34.40$ Eta= .666	d.f.= 6	p= .000 °	
	* .	•	,		
		,			2
		Ų		· .	
3-р	0.00 to 1.00	50.0	77.8	77.8	76.9
	1.01 to 2.00	50.0	22.2	22.2	23.1
	over 2.00	0.0	0.0	0.0	0.0
	a a	$\chi^2 = 1.56$	d.f.= 3	p= .669	
		Eta= .158	, ,	٧	

Number of test items appear in brackets.

Table 3.6.35 .

Correlations Among Several NAEP Math Item Variables (Booklet Ng.:1 and 2, 260 Items, 9 and 13 Year Olds, 1977-78)

Variable	SR(1-p)	SR(3-p)	p	r	\mathbf{F}^1
Item Order	、	4		the spa	
Standardized Residual (1-p) Standardized		. 1′8	30	62	25 ⊶
Residual (3-p)			.09	\ 11	.07
Item Difficulty (p)				.41	.04
Item Discrimination (r)	o	•			° .49
Format (F)		+		1	9

^{1 1=}Multiple-Choice; 2=Open-Ended.

Table 3.6.36

and NAEP Item Content Classifications (Booklets No. 1 and 2, 260 Items, 9 and 13 Year Olds, 1977-78)

				d Residuals	-
Content Category	Number of Items	1-p SR(≤1.0) (n=48)	SR(>1.0) (n=212)	: 3- SR(≤1.0) (n=197)	P SR(>1.0) (n=63)
Story Problems	52	21.2	78.8	82.7	17.3
Geometry	48	22.9	77.1	75.0	25.0
Definitions	. 42	16.7	83.3	78.6	21.4
Calculations	-83	15.7	84.3	69.9	30.1
Measurement	17	11.8	88.2	82.4	17.6
Graphs and Figures	18	22.2	77.8	72.2	27.8
	· :,	$\chi^2 = 2.08$	•	$x^2 = 3.65$	
		d.ř.= 5	p= 1838	d.f.= 5	p=602

Table 3.6.37

Association Between Standardized Residuals and Item Formats
(Booklets No. 1 and 2, 260 Items, 9 and 13 Year Olds, 1977-78)

Format	Standardized	· 1-p Re	esults	3-p Results	
rormat	Residuals	N	%	N	%
		h		•	
Multiple-Choice	SR(≤1.0)	24	9.2	115	44.2
	SR(>1.0)	116	44.6	25	9.6
		•	, • • · · · ·		
Open-Ended	SR(≤1.0)	24 ·	9.2	82	31.5
	SR(>1.0)	96	36.9	38 "-	14.6
• *		x ² =.1	86	$\chi^2 = 5$.	98
	,	d.f.= 1	p=.666	d.f.= 1	p= .015

Table 3.6.38

Association Between Standardized Residuals and Item Difficulties (Booklets No. 1 and 2, 260 Items, 9 and 13 Year Olds, 1977-78)

Difficulty	Standardized			1-p Results		3-p R	esults
Level		Residuals		N	%	N	. %
Hard (p<.5)		SR(<1.0)		14 4	5.4	99	38.1
		SR(>1.0)	•	110	42.3	25	9.6
							<u>, </u>
Easy (p≥.5)		SR(≤1.0)	4	34	13.1	98	37.7
÷		SR(>1.0)		102	39.2	38	14.6
•				λ· = 7	.21) ² = 1	.74
				a.f.= 1	p = .00	7 d.f.= 1	p= .18

Table 3.6.39

Association Between Item Formats and Item Difficulties (Booklets No. 1 and 2, 260 Items, 9 and 13 Year Olds, 1977-78)

Difficulty Level	Format		%	
Hard (p<.5)	Multiple-Choice	70	26.9	•
	Open-Ended	54	20.8	
e.	* 10 to 10 t		o	
Easy (p≥.5)	Multiple-Choice	70	26.9	
	Open-Ended°	. 66	25.4	•
		$\chi^2 =$.	463	
		d.f.= 1	p= .496	.0

Table 3.6.40

Descriptive Statistical Analysis of Standardized Residuals

(Booklets No. 1 and 2, 260 Items, 9 and 13 Year Olds, 1977-78)

-, cd.	4	Number	1-p R	esults .	3-p Re	sults
Difficulty _Level	Format	of Ftems	X	SD	\overline{X}	SD
Hard (><.5)	Multiple-Choice	70 ·	2.73	1.55	. 82	23
	Open-Ended	54	1.64	.81	.86	.28
ç		8 .	, "			,
Easy (p≥.5)	: Multiple-Choice	70	1.79	1.10	.90	.64
	Open-Ended	66	1.67	· .72	.97	.38
· •			, .,			

Table 3.6.41

Relationship Between Item Discrimination Indices and Standardized Residuals
(Booklets No. 1 and 2, 260 Items, 9 and 13 Year Olds, 1977-78)

Mode1	Standardized Residuals	01 to .30	Discrimination .31 to .50	on Indices .51 to .70	.71 to 1.00
		(29) ¹	~ (55)	(125)	(51)
1-p	0.00 to 1.00	0.0	10.9	33.6	0.0
	1.01 to 2.00	0.0	32.7	62.4	29.4
,	over 2.00	100.0	56.4	4.0	70.6
		$x^2 = 143.7$ ° Eta= .691	d.f.= 6	p= 0	
		•		•	
• 1		•		· •	
3-р	0.00 to 1.00	. , 75.9	80.0	76.8	68.6
,	1.01 to 2.00	20.7	18.2	23.2	29.4
	over 2.00	3.4	1.8	0.0	2.0
	. - .	Eta= .092	d.f.='6	p=.508	

Number of test items appear in brackets.

Table 3.6-36

- Relationship between standardized residuals and content categories.
- 1. The pattern of standardized residuals is the same across content categories. Misfit statistics for both the one- and three-parameter models clearly are unrelated to the content of the test items. Of course, the standardized residuals are substantially smaller for the three-parameter model.

Table 3.6.37

- Association between standardized residuals and item formats. It seemed useful to know whether the pattern of misfit statistics for multiple-choice and open-ended test items was the same with the one- and three-parameter models.
- 1. The pattern of misfit statistics with the one-parameter model is about the same with the two item formats. Residuals were somewhat larger with multiple-choice items.
- 2. The pattern of misfit statistics with the three-parameter model was also about the same for the two item formats. Somewhat surprisingly the results were a little poorer with the open-ended items. One conjecture is that the c parameters were over estimated.

Table 3.6.38

- Associations between standardized residuals and item difficulty. ~
- 1. The one-parameter standardized residuals were substantially higher for difficult items than for easy items.
- 2. The three-parameter standardized residuals were unrelated to item difficulty.

Table 3.6.39

- Association between item formats and item difficulty.
- There were approximately the same number of hard and easy test items, and the distribution of items in each format for hard and easy items.
 was about the same. There were a few more easy open-ended test items than hard open-ended test items.

The problem was likely due to our failure to designate some test items as "open-ended" when running LOGIST.

Tab1 3.6.40

- Analysis of standardized residuals for items organized by difficulty and format.
- 1. Hard multiple-choice items had substantially larger residuals when fit by the one-parameter model than easy items in either format, or hard items in open-ended format. This result suggests that the problem is due to a failure to account for guessing behavior (note, the fit was better for hard open-ended items where guessing behavior is not operative). The differences between the average one-parameter and three-parameter model standardized residuals, except for the hard multiple-choice test items, are probably due to the difference in the way item discriminating power is handled. With the hard multiple-choice test items, the difference is due to a failure to account for both item discriminating power and examinee guessing behavior in the one-parameter model.
- 2. There were no relationships among item difficulty level, item format, and standardized residuals obtained from fitting the three-parameter model.

Table 3.6.41

- Relationship between item discrimination indices and standardized residuals.
- 1. The one-parameter model residuals are non-linearly related to classical item discrimination indices (Eta=.691).
- 2. The three-parameter model residuals are not related in any fashion to classical item discrimination indices (Eta=.061).

In summary, the results of our hypothesis testing showed clearly that the test items in the content categories we worked with were not in any way being fit better or worse by the item reponse models, and failure to consider examinee guessing behavior and variation in item discriminating power resulted in the one-parameter model providing substantially poorer fits the various test data sets than the three-parameter model.

4.0 Conclusions

4.1 Implications of Findings for NAEP

The potential of item response theory has been widely documented but that potential is certainly not guaranteed when applied to particular tests, with particular samples of examinees, or when used in particular applications. Item response theory is not a magic wand to wave over a data set to fix all of the inaccuracies and inadequacies in a test and/or the testing procedures. But, when a bank of content valid and technically sound test items is available, and goodness of fit studies reveal a high match between the chosen item response model and the test data, item response models may be useful to NAEP in test development, detection of biased items, score reporting, equating test forms and levels, item banking, and other applications as well. The goals of this study were in a general way aimed at all possible item response model applications to NAEP data, but specifically aimed at the possible uses of item response models in mathematics item banking, one of the lesser important concerns of ECS on the NAEP project at the present Still, there is great interest at the national, state, district, and school-level in item banking and NAEP exercises. In addition to the overall quality of NAEP exercises, NAEP exercises are "normed" and so interest in them and their statistics is high.

The implications of the present study for NAEP are the following:

1. A large number of goodness of fit investigations were described in Chapter 2 and several new investigations were conducted and described in Chapter 3. Many of these investigations can now be tried on other NAEP

data sets to determine the generalizability of the conclusions drawn in this study concerning model data fit. 4

2. The findings of this investigation clearly support the desirability of conducting a wide range of analyses on a data set, and on several data sets. Were a narrow set of analyses to be conducted on (possibly) a single model and data set the interpretation of results would have been more confusing and difficult. The approaches described in Figure 2.3.1 should provide some direction to NAEP staff and other researchers with an interest in LRT applications.

It seems clear that the three-parameter model performed substantially better than the one-parameter model. The results were not especially surprising, given information about the ways in which the NAEP exercises are constructed (i.e., relatively little use is made of item statistical information in test development). While the utility of the three- over the one-parameter model was not too surprising, the actual fits of the three-parameter model to the data sets were. The study of standardized residuals at the item level and ability level revealed a very good fit of the three-parameter model.

- 4. Not all of the analyses revealed high three-parameter model-test data fit. The studies of "bias" were the most confusing. Regardless of whether the three-parameter model or the one-parameter model was fitted to the data, a number of potentially "biased" items were identified. Several possible explanations exist: Several test items are biased against one group or another (e.g., race, or high and low performers) or there are problems in item parameter estimation (e.g., c parameters cannot be properly estimated in high performing groups, or in any groups black or white or hispanic if group size is of the size used in this investigation).
- 5. Perhaps the most important finding is that it is highly sunlikely that the one-parameter model will be useful with NAEP mathematics exercises. This is in spite of the fact that many other organizations are very pleased with their work with the one-parameter model. With NAEP mathematics booklets it appears there is too much variation among mathematics items in their discriminating power and too much guessing on the hard multiple-choice test items for the one-parameter model to provide an adequate fit to the test data.

It is our opinion that the results from the first part of the study will be of interest and value to measurement specialists who are considering the usefulness of item response models in their work. Essentially, we are recommending that measurement specialists design and carry out a comprehensive set of analyses to provide themselves with sufficient information to make informed judgments about the usefulness of item response models in their particular applications. The amount of effort extended in collecting information will be, of course, directly related to the importance of the intended applications.

The second part of the study provides information that can impact on the future use of item response models in NAEP. There is considerable evidence in Chapter 3 suggesting that the three-parameter logistic model provides a very good accounting of the actual mathematics test results. The one-parameter logistic model did not. It may be that NAEP will now want to consider utilizing the three-parameter model in some small scale item bias, item banking, and test development efforts to determine the utility and appropriateness of the three-parameter model. Such investigations seem highly worthwhile at this time. Of course, it may be that with other content areas the one-parameter model may suffice, and for problems of score reporting new models being ceveloped by Bock, Mislevy, and Woodson may be substantially better than the three-parameter logistic model.

5.0 References

- Andersen, E.B. A goodness of fit test for the Rasch model. <u>Psychometrika</u>, 1973, <u>38</u>, 123-140.
- Baker, F.B. An intersection of test score interpretation and item analysis. <u>Journal of Educational Measurement</u>, 1964, <u>1</u>, 23-28.
- Baker, F.B. Origins of the item parameters x_{50} and β as a modern item analysis technique. <u>Journal of Educational Measurement</u>, 1965, <u>2</u>, 167-180.
- Bejar, I.I. A procedure for investigating the unidimensionality of achievement tests based on item parameter estimates. <u>Journal of Educational Measurement</u>, 1980, <u>17</u>, 283-296.
- Birnbaum, A. Some latent trait models and their use in inferring an examinee's ability. In F.M. Lord & M.R. Novick, Statistical theories of mental test scores. Reading, MA: Addison-Wesley, 1968.
- Bock, R.D. Estimating item parameters and latent ability when responses are scored in two or more nominal categories. <u>Psychometrika</u>, 1972, <u>37</u>, 29-51.
- Bock, R.D., & Lieberman, M. Fitting a response model for n dichotomously scored items. <u>Psychometrika</u>, 1970, <u>35</u>, 179-197.
- Cronbach, L.J., & Warrington, W.G. Time-limit tests: Estimating their reliability and degree of speeding. Psychometrika, 1951, 16, '167-188.
- Divgi, D.R. Does the Rasch model really work? Not if you look closely. Paper presented at the annual meeting of NCME, Los Angeles, 1981.
- Donlon, T.F. An exploratory study of the implications of test speededness. Princeton, NJ: Educational Testing Service, 1978.
- Green, S.B., Lissitz, R.W., & Mulaik, S.A. Limitations of coefficient alpha as an index of test unidimensionality. Educational and Psychological Measurement, 1977, 37, 827-838.
- Gulliksen, H. Theory of mental tests. New York: Wiley, 1950.
- Hambleton, R.K. Latent trait models and their applications. In R. Traub (Ed.), Methodological developments: New directions for testing and measurement (No. 4). San Francisco: Jossey-Bass, 1980.
- Hambleton, R.K. Latent ability scales, interpretations, and uses. In S. Mayo (Ed.), New directions for testing and measurement: Interpreting test scores (No. 6). San Francisco: Jossey-Bass, 1980.

- Hambleton, R.K. (Ed.) Applications of item response models. Vancouver, BC: Educational Research Institute of British Columbia, 1982. (a)
- Hambleton, R.K. Applications of item response models to criterionreferenced assessments. Applied Psychological Measurement, 1982, 6,
 in press. (b)
- Hambleton, R.K. Advances in criterion-referenced testing technology. In C. Reynolds & T. Gutkin (Eds.), <u>Handbook of School Psychology</u>. New York: Wiley, 1982. (c)
- Hambleton, R.K., & Cook, L.L. The robustness of latent trait models and effects of test length and sample size on the precision of ability estimates. In D. Weiss (Ed.), New Horizons in Testing. New York: Academic Press, 1982.
- Hambleton, R.K., & Swaminathan, H. <u>Introduction to item response models</u> and their applications. Boston: Martinus-Nijhoff Publishers, 1982.
- Hambleton, R.K., Swaminathan, H., Cook, L.L., Eignor, D.R., & Gifford, J.A. Developments in latent trait theory: Models, technical issues, and applications. Review of Educational Research, 1978, 48, 467-510.
- Hambleton, R.K., & Traub, R.E. Analysis of empirical data using two logistic latent trait models. British Journal of Mathematical and Statistical Psychology, 1973, 26, 195-211.
- Hattie, J.A. Decision criteria for determining unidimensionality.
 Unpublished doctoral dissertation, University of Toronto, 1981.
- Horn, J.L. A rationale and test for the number of factors in factor analysis. <u>Psychometrika</u>, 1965, <u>30</u>, 179-185.
- Linn, R.L., & Harnisch, D.L. Interactions between item content and group membership on achievement test items. <u>Journal of Educational</u>
 Measurement, 1980, <u>17</u>, 179-194.
- Lord, F.M. A theory of test scores. Psychometric Monograph, 1952, No. 7.
- Lord, F.M. An application of confidence intervals and of maximum likelihood to the estimation of an examinee's ability. <u>Psychometrika</u>, 1953, <u>18</u>, 57-76.
- Lord, F.M. Estimating item characteristic curves without knowledge of their mathematical form. <u>Psychometrika</u>, 1970, <u>35</u>, 43-50.
- Lord, F.M. Estimation of latent ability and item parameters when there are omitted responses. <u>Psychometrika</u>, 1974, <u>39</u>, 247-264.
- Lord, F.M. Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum, 1980.

- Lord, F.M., & Novick, M.R. Statistical theories of mental test scores.

 Reading, MA: Addison-Wesley, 1968.
- Lumsden, J. The construction of unidimensional tests. <u>Psychological</u> <u>Bulletin</u>, 1961, <u>58</u>, 122-131.
- Lumsden, J. Test theory. Annual Review of Psychology, 1976, 27, 251-280.
- McDonald, R.P. The dimensionality of tests and items. <u>British Journal of Mathematical and Statistical Psychology</u>, 1980, 33, 205-233. (a)
- McDonald, R.P. Fitting latent trait models. In D. Spearitt (Ed.), The Improvement of Measurement in Education and Psychology. Proceedings of the Invitational Seminar for the Fiftieth Anniversary of the Australian Council of Educational Research, Melbourne, 1980. (b)
- McDonald, R.P., & Ahlawat, K.S. Difficulty factors in binary data.

 <u>British Journal of Mathematical and Statistical Psychology</u>, 1974, <u>27</u>, 82-99.
- Mead, R. Assessing the fit of data to the Rasch model. A paper presented at the annual meeting of AERA, San Francisco, 1976.
- Popham, W.J. Modern educational measurement. Englewood Cliffs, NJ: Prentice-Hall, 1980.
- Reckase, M.D. Unifactor latent trait models applied to multifactor tests: Results and implications. <u>Journal of Educational Statistics</u>, 1979, 4, 207-230.
- Ree, M.J. Estimating item characteristic curves. Applied Psychological Measurement, 1979, 3, 371-385.
- Ross, J. An empirical study of a logistic mental test model.

 <u>Psychometrika</u>, 1966, <u>31</u>, 325-340.
- Samejima, F. A use of the information function in tailored testing.

 Applied Psychological Measurement, 1977, 1, 233-247.
- Swaminathan, H. Bayesian estimation in the two-parameter logistic model.

 <u>Laboratory of Psychometric and Evaluative Research Report No. 112</u>.

 Amherst, MA: University of Massachusetts, 1981.
- van den Wollenberg, A.L. On the Wright-Panchapakesan goodness of fit test for the Rasch model. Nijmegen, The Netherlands: Department of Mathematical Psychology, University of Nijmegen, 1980.
- van den Wollenberg, A.L. A simple and effective method to test the dimensionality axiom of the Rasch model. Applied Psychological Measurement, 1982, in press. (a)

- van den Wollenberg, A.L. Two new test statistics for the Rasch model. Psychometrika, 1982, in press. (b)
- Waller, M.I. A procedure for comparing logistic latent trait models.

 Journal of Educational Measurement, 1981, 18, 119-125.
- Wingersky, M.S. LOGIST: A program for computing maximum likelihood procedures for logistic test models. In R.K. Hambleton (Ed.),

 Applications of Item Response Models. Vancouver, BC: Educational Research Institute of British Columbia, 1982.
- Wingersky, M.S., Barton, M.A., & Lord, F.M. LOGIST user's guide.
 Princeton, NJ: Educational Testing Service, 1982.
- Wright, B.D. Sample free test calibration and person measurement.

 Proceedings of the 1967 Invitational Conference on Testing Problems.

 Princeton, NJ: Educational Testing Service, 1968.
- Wright, B.D., Mead, R., & Draba, R. Detecting and correcting item bias with a logistic response model.
 Chicago: University of Chicago, Education, 1976.

 Detecting and correcting item bias Research Memorandum No. 22.
 Statistical Laboratory, Department of Education, 1976.
- Wright, B.D., & Panchapakesan, N. A procedure for sample-free item analysis. Educational and Psychological Measurement, 1969, 29, 23-37.
- Wright, B.D., & Stone, M.H. Best test design. Chicago: MESA, 1979.
- Yen, W.M. The extent, causes and importance of context effects on item parameters for two latent trait models. <u>Journal of Educational</u> Measurement, 1980, 17, 297-311.

Appendix A

Item Response Model Coodness of Fit Studies

Item Response Model Goodness of Fit Studies!

- Andersen, E.B. A goodness of fit test for the Rasch model. <u>Psychometrika</u>, 1973, 38, 123-140.
- Bejar, I.I. A procedure for investigating the unidimensionality of achievement tests based on item parameter estimates. <u>Journal of Educational Measurement</u>, 1980, <u>17</u>, 283-296.
- Baker, F.B. The effect of criterion score grouping upon item parameter estimation. British Journal of Mathematical and Statistical Psychology, 1967, 20, 227-238.
- Bentler, P.M. and Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. <u>Psychological Bulletin</u>, 1980, <u>88</u>, 588-606.
- Callender, J.C. and Osburd, H.G. An empirical comparison of coefficient Alpha, Guttman's lambda-2, and msplit maximized split-half reliability estimates. Journal of Educational Measurement, 1979, 16, 89-99.
- Cattell, R.B. The scree test for the number of factors. Multivariate Behavioral Research, 1966, $\underline{1}$, 245-276.
- Cattell, R.B. and Vage mann, S. A comprehensive trial of the score and kg criteria for determining the number of factors. Multivariate Behavioral Research, 1977, 12, 289-325.
- Christoffersson, A. Factor analysis of dichotomized variables. <u>Psychometrika</u>, 1975, <u>40</u>, 5-32.
- Crane, J.A. Relative likelihood analysis versus significance tests. <u>Evaluation Review</u>, 1980, <u>4</u>, 824-842.
- Donlon, T.F. An exploratory study of the implications of test speededness. Unpublished manuscript, 1978.
- Frisbie, D.A. A method for comparing test difficulties. A paper presented at the annual meeting of the National Council on Measurement and Education, Los Angeles, 1981.
- George, A.A. Theoretical and practical consequences of the use of standar-dized residuals as Rasch model fit statistics. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, 1979.
- Goldstein, H. Changing educational standards: a fruitless search. <u>Journal</u>
 of the National Association of Inspectors and Educational Advisors, 1979,
 11, 18-19.

¹Prepared by Ronald 7. Hambleton and Linda Murray.

- Goldstein, H. Dimensionality, bias, independence and measurement scale problems in latent trait test score models. British Journal of Mathematical and Statistical Psychology, 1980, 33, 234-246.
- Goldstein, H. Consequences of using the Rasch model for educational assessment. British Educational Research Journal, 1979, 5, 211-220.
- Green, S.B., Lissitz, R.W., and Mulaik, S.A. Limitations of coefficient alpha as an index of test unidirensionality. Educational and Psychological Measurement, 1977, 37, 827-838.
- Gustafsson, J.E. Testing and obtaining fit of data to the Rasch model.

 British Journal of Mathematical and Statistical Psychology, 1980, 33, 205-233.
- Hakstian, A.R. and Muller, V.J. Some notes on the number of lactors problem.

 Multivariate Behavioral Research, 1973, 8, 461-475.
- Hambleton, R.K. and Traub, R.E. Analysis of empirical data using two logistic latent trait models. <u>British Journal of Mathematical and Statistical Psychology</u>, 1973, 26, 195-211.
- Hambleton, R.K. and Cook, L.L. Some results on the robustness of latent trait models. Paper presented at the Annual Meeting of the American Educational Research Association, Toronto, 1978.
- Hartwig, F. and Dearing, B.E. <u>Explatory Data Analysis</u>. Beverly Hills, CA: Sage Publications, 1979.
- Holland, P.W. When are item response models consistent with observed data? Psychometrika, 1981, 46, 79-92.
- Horn, J.L. A rationale and test for the number of factors in factor analysis.

 Psychometrika, 1965, 30, 179-185.
- Humphreys, L.G. and Montanelli, R.G. An investigation of the parallel analysis criterion for determining the number of common factors. Multivariate Behavioral Research, 1975, 10, 193-205.
- Jöreskog, K.G. Estimation and testing of simplex models. British Journal of Mathematical and Statistical Psychology, 1970, 23, 121-145.
- Linn, R.L. and Harnisch, D.L. Interaction between item content and group membership on achievement test items. Journal of Educational Measurement, 1981, 18, 109-118.
- Lord, F.M. Practical applications of item characteristic curve theory.

 Journal of Educational Measurement, 1977, 14, 117-138.
- Lord, F.M. Estimation of latent ability and item parameters when there are omitted responses. Psychometrika, 1974, 39, 247-263.
- Lord, F.M. A broad-range tailored test of verbal ability. Applied Rsychological Measurement, 1977, 1, 95-100.

- Lord, F.M. Item characteristic curves estimated without knowledge of their mathematical form a confrontation of Birnbaum's logistic model. Psychometrika, 1970, 35, 43-50...
- McDonald, R.P. Some alternative approaches to the improvement of measurement in education and psychology: fitting latent trait models. Paper presented at the A.C.E.R. Invitational Seminar, Melbourne, May 22-23, 1980.
- McDonald, R.P. The dimensionality of tests and items. British Journal of Mathematical and Statistical Psychology, 1981, 34, 100-117.
- Miller, J. and Greeno, J.G. Goodness-of-fit tests for models of latency and choice. Journal of Mathematical Psychology, 1978, 17, 1-13.
- Mukherjee, B.N. Derivation of likelihood-ratio tests for Guttman quasi-simplex covariance structures. Psychometrika, 1966, 31, 97-124.
- Reiser, M.R. A latent trait model for group effects. Unpublished dissertation, University of Chicago, 1980.
- Slinde, J.A. and Linn R.L. The Rascu model, objective measurement, equating, and robustness. Applied Psychological Measurement, 1979, 3, 437-452.
- Terwilliger, J.S. and Lele, K. Some relationships among internal consistency, reproducibility, and homogeneity. <u>Journal of Educational Measurement</u>, 1979, 16, 101-108.
- Traub, R.E. and Wolfe, R.G. Latent trait theories and the assessment of educational achievement. In D. Berliner (Ed.), Review of Research in Education Vol. 9. Washington: American Educational Research Association, 1981.
- Tucker, L.R. and Lewis, C. A reliability coefficient for maximum likelihood factor analysis. <u>Psychometrika</u>, 1973, <u>38</u>, 1-10.
- Waller, M.I. A procedure for comparing logistic latent trait models. <u>Journal</u> of Educational Measurement, 1981, <u>18</u>, 119-125.
- Whitely, S.E. Models, meanings, and misunderstandings: some issues in applying Rasch's theory. Journal of Educational Measurement, 1977, 14, 227-235.
- Wollenberg, A.L. van den. The Rasch model and time-limit tests: an application and some theoretical contributions. Unpublished dissertation, University of Nijmegen, 1979.
- Wright, B.D. Sample-free test calibration and person measurement. <u>Proceedings</u> of the 1967 Invitational Conference on Testing Problems. Princeton, NJ: Educational Testing Service, 1968.
- Wright, B.D. Misunderstanding the Rasch model. <u>Journal of Educational</u> <u>Measurement</u>, 1977, <u>14</u>, 219-225.

Appendix B

Item Response Model Residual Analysis Program
(Program Listing and Sample Output)

```
THE UNIVERSITY OF MASSACHUSETTS
       ON THE COC CYBER 175 IN THE FORTRAN VERSION 5 LANGUAGE
     PROGRAM TEST(INPUT, DUTPUT, TAPESO, TAPE60, TAPE8, TAPESDIMENSION EX (19,75), A (75), B (75), C (75)
                  SE (19,75), OE (19,75), SV (19,75), RESID (19,75) IRESULT (19,76), IANS (75), PRESULT (19,75)
     DIMENSION
                   ITITLE (23), ABIL(19)
     DIMENSION
     REAL LEVEL
     CHARACTER*10 DATE, TODAY
     OUTPUT IS PRINTED ON TAPE
DATA IS READ IN ON TAPES. TAPESU,
TAPES CONTAINS ITEM FARAMETERS
TA PEGU CONTAINS ABILITY ESTIMATES AND RESPONSE VECTORS FOR
TAPES CONTAINS PROGRAM OPTIONS
DIRECTIONS FOR SETTING UP DATA DECK ON TAPES
       1-READ_IN_USER_DEFINED TITLE (ITITLE)
       Z-NUMBER OF ITEMS (ITEMS)
       3-NUMBER OF EXAMINEES (NSUBJ)
4-MAXIMUM ABILITY VALUE (REAX
       5-MINIMUM ABILITY VALUE (RMIN)
6-SIZE OF AN ABILITY CATEGORY (SIZINT)
CA RD
       7-DO YOU WANT THIP VALUES (IPP) PRINTED ?
CARD
        Y FOR YES OR N FOR NO
       8-DO YOJ WANT THE RESIDUALS (IPR)
Y FOR YES OF N FOR NO
CARD
                         N FOR NO
THE STANDARDIZED RESIDUALS
       THAW LOY OU-6
        Y FOR YES OR N FOR NO
READ (5,520) IT I TLE
520 FORMAT (2) A 4)
     WRITE HEADING PAGE FOR UMASS
      TODAY=DAT= ()
      WRITE(8,11)TODAY -
 11 FCRMAT(1H1,/////, 35x, "RESIDUAL ANALYSES OF LOGISTIC TEST DATA", */,5ux, "DATE:", A10,/,51x, "(VERSION 3A)",///,40x,
    *"FROGRAM BY LINDA MURKAY", /, 51X, "RONALD HAMBLETCK"
    */,51X, "ROBERT SIMON", /////, 35X,
    *"DEVELOPED AT THE UNIVERSITY OF MASSACHUSETTS" , / , 44X ,
    *"SCHOOL OF EDUCATION",/, 42x,
    * "UNDER A GRANT FROM NAEP")
      WRITE(8,530) ITITLE
     FORMAT (////, 35X, 20A4, ///)
READ (5.1) I TEMS
      READ (5,1) N SUBJ
     FORMAT (17)
     READ (5,2) RMAX
FORMAT (85,2)
      READ (5,2) RMIN
READ (5,2) S IZINT
     READ(5,3) IPPREAD(5,3) IPR
FCRMAT (A1)
                                              20.3
```

READ(5.3) IFS

```
C LIMIT IS THE NUMBER OF ABILITY CATEGORIES
      LIMIT= (ABS (RMIN) +RMAX) /S IZINT
   WRITE(8,21)ITEMS, NSUBJ, LIMIT
21 FORMAT(////, 35X, I3, " "ITEMS /
-/*I2," ABILITY GROUPINGS ")
 MORFL 1 IS THE ONE PARAMETER LOGISTIC MODEL
      MODFL=1
 ITEMONE IS THE LAST COLUMN IN THE OBSERVED P VALUE MATRIX
      FOR COUNTING THE NUMBER OF PEOPLE IN AN ABILITY CATEGORY
      I TEMONF # I TEMS+1
 READ IN FOR MOTEL 1 ON TAPESC A.B.C PARAMETERS FOR ALL ITEMS
      00 4 I=1, ITEMS

READ(60,2.0) A(I),B(I),C(I)

FCRMAT (5x,3(F6.3))
    4 CONTINUE
    G ( TO 10
5 C (NTINUE
      REWIND 60
  REAL IN FOR MODEL 3. ON TAPES OF THE A.B.C PARAMETERS FOR ALL ITEMS
 MODEL 3 IS THE THREE PARAMETER LOGISTIC MODEL.
      MODEL=3
      Do 6 I=1.ITEMS
READ(60,7) A(I),B(I),C(I)
    7 FORMAT (24x,3 (F6.3))
6 GONTINUE 4
    8 C.CNTINUE
  THIS IS THE TERMINATION OF THE BROGRAM
 THE COE BELOW THIS FOINT IS USED TO CALCULATE THE P VALUES AND RESIDUALS
   10 CONTINUE
  AR IS THE MIDPICIAT OF THE LOWEST ABILITY CATEGORY
      AB=RMIN+(SIZINT/2.0)
 THIS LOOP GALOULATES THE MIDPOINT OF THE ABILITY CATEGORIES, ABIL(J).
        AND THE EXPECTED P VALUES MATRIX, EXCUAL)
          300 I=1.ITEMS
                J=1,L MIT
      APIL(J)=43+(J-1) (SIZINT
      QD=(1.7*A(I)*(AB N(J)-B(I)))
      D=2.7182818**(DD)
      FX(J,I)=C(I)+(I.0-C(I))+(D/(1.0+D))
       IF(EX(J,I).LT..G1)EX(J,I)=.01
IF(EX(J,I).GT..99)EX(J,I)=.99
                                                          204
      CON INUE
```

```
SET EQUAL TO FERO THE COUNTER FOR DETERMINING THE NUM
      KCOUNT=.
 ZERC GUT ARRAY IRESULT WHICH CONTAINS THE NUMBER OF EXAMINEES IN AN ABILITY CATEGORY
    AND THE NUMBER OF EXAMINEES WHO GET THE ITEMS CORRECT
      DO 48:I=1,LIMIT
      DO 48 J=1. IT MONE IRESULT(I, J)=
 480 CONTINUE
 READ IN FOR EITHER MCCEL ON TAPESC THE ABILITY ESTIMATE (LEVEL) AND THE RESPONSE
      VECTOR FOR EACH EXAMINEE (IANS(K))
      00 1. I=1,NSUBJ
IF(MODEL.EG.3)G0 10 15
READ(50,490)LEVEL,(IANS(K),K=1,ITEMS)
      GO TO 19
   15 CONTINUE
      READ(5),16) LEVEL, (IANS (K), K=1, ITEMS)
  16 F (RMAT (/, 10x, F1 0. 3, 2x, 73 11)
   19 CONTINUE
  490 F CRMAT (/, F 10.3, 10x, 2x, 73 I1)
 KCCUNT COUNTS OF THE NUMBER OF EXAMINEES THAT FALL BEYOND THE MAXIMUM
      OF MINIMUM ABILITY VALUES
      IF ( (LEVEL. GI.RMAX) . OR. (LEVEL . LT. RMIN) ) KG CUNT = KCCUNT +1
      IF ((LEVEL. GT. RMAX). OR. (LEVEL.LT. RMIN)) GO TO 10 G
 IABIL IS THE ABILITY ESTIMATES TRANSFORMED INTO AN ABILTY CATEGORY
      IARIL=(((LEVEL+ABS(RMIN))/SIZINT)+1)
      IRESULT (IA E IL, ITEMONE) = IRE SULT (IABIL, ITEMONE) + 1
      DO 25 J=1. ITEMS
      IRESULT (IABIL, J) = IRESULT (IABIL, J) + IANS(J)
   20 CONTINUE
 100 CONTINUE
 PRESULT IS THE MATRIX OF OBSERVED P VALUES
      00 220 I=1.ITEMS
00 220 J=1.LIMIT
      PRESULT (J. I)= (F LOAT (IRESULT (J, I))/FLOAT (IRESULT (J, ITEMONE)))
  220 CCALINUE
      REWIND 50
 DO YOU WANT TO PRINT OUT THE P VALUE TABLES ??????????????
    50 \text{ IPP IS} = 70 \text{ Y}
C
      IF (IPP.NE. "Y") GO "3 471
  PRINT THE EXPECTED P VALUES MATRIX
      ARITE(8,256) MODEL
      WRITF (8,118)
  11) FORM, (56Y, 'ABILITY LEVEL')
  #RITE(8,120)(I, I=1, LIMIT)
12 J FCRM(T(3X, "CATEGORY", 1X, 19 (3X, I3)/)
  250 FORM- 1(141,7//7,43X, EXPECTED PIVALUES-1,11, PARAMETER MODEL1,///
       ARITE(8:55) (ABIL(J),J=1,LIMIT)
   55 FORMAT (/, 3 X, "MID-POINT", 2X, 19(1X, F5, 2)/)
```

206

```
WRITE'S, 130) (IRESULT(I, ITEM CNE), I=1, LIMIT)
150 FORMAT (7,5 %, 'ITEM')
    L=10
    450 FORMAT (6x, 12, 6x, 19( 66, 3) )
    K=400(I,L)
    IF (K.NE. )) GO TO 451
    ÑRITE (8•262)
451 CONTINUE
40 ( CONTINUE
PRINT THE OBSERVED P VALUES MATRIX
    WRITE (8,470)
470 FORMATU////
   -- WRITE(8,12)
    WRITE(8,510)MODEL
    WRITE(8,110)
WRITE(8,120)(I,I=1,LIMIT)
WRITE(8,55)(ABIL(J),J=1,LIMIT)
     WRITE(8,130)(IRESULT(I,ITEMONE),I=1,LIMIT)
    FORMAT(3x, 'NC, CF', 7,2x, 'EXAMINEES',1x,19(3x, I3)//)
    WRITE(8,150)
    FORMAT(///, 'THE NO. OF EXCLUDED CASES=', 19)
    FORMAT(141)
    FORMAT(///,40X, 'OBSERVED P VALUES-', II, ' PARAMETER MODEL',////
            I=1 . ITEMS
    WRITE(8,260) I, (PRESULT(J,I),J=1,LIMIT)
260 FORMAT(6X, I2, 6 X, 19(F6.3))
    K=MOD(I.L)
    IF (K.NE. 0) GO TO 261
    WRITE (8,262)
262
    FORMAT(/)
    CCNTINUE
261
270 CONTINUE
    WRITE(8,17 () KCOUNT
471 CONTINUE
GO DO RESIDUALS AND STD RESIDUALS FOR THIS CASE
    CALL RITEMS, LIMIT, EX, IRESULT, PRESULT, ITEMONE, MCCEL,
    *IFR, IPS, ABIL, NSUBJ, KCOUNT)
   ONE PARAMETER MOCEL GO BACK AND DO THREE PARAMETER MODEL
       (MODEL.EQ.1) GOTO 5
     IF
   THREE PARAMETER MODEL GO TO END OF
                                           PROGRAM
     IF (MODEL.Eg.3) GOTO 8
    END
THIS SUBROUTINE CALCULATES RESIDUALS, STD RESIDUALS AND VARIOUS STATISTICS
     SUBROUTIN# R(ITEMS,LIMIT,EX,IR,PR,ITEMONE,MODEL,
    *IFS, IPR, 48 IL, NSUBJ, KCOUNT)
                SE(19,75), OE(19,75), SV(19,75), RESID(19,75)
IR(19,75), PR(19,75), EX(19,75), ARIL(19)
     DIMÉNSIÓN
     GIMENSION
     IRES=:
     IRE1=
     IRE2=1
     IRE3=.
                                                      207
```

```
STANDARD ERROR OF THE EXPECTED P VALUES RESIDUAL=08 SERVED-EXPECTED
      IS
IS
  RESID IS THE RESIDUAL STANDARDIZED
           930
                I=1, ITEMS
       00
          9ûi
                J=1,LI IIT
       ŠV(J,Ï)=(ËX(J,Ī)*(1.0-EX(J,I)))/FLOAT(IR(J,ITEMONE))
       SE(J,I)=SORT(SV(J,I))
       nE(J,I)=(PR(J,I)-(EX(J,")))
       ŘESID(J,I)=OĚ(J,I)/SE(J,I)
       IF((ARS(RESID(J, I)).GE.U.UU().AND.(ABS(RESID(J.I)).LT.1.G(0))
           ((ABS(RESTD(J.1)).GE.1.600).AND.(ABS(RESIC(J.1)).LT.~2.600))
      *ĪRE1=IRE1+1
        IF ((ABS(RESID(J,1)).GE.2.000)\AND.(ABS(RESIC(J,1)).LT.3.000))
      *I952=IRE2+1
        ĬF(ĀBS(RĒSĪD(J, I)).GE,3;;;;;;;) IRE3=IRE3+1
  900 CONTINUE
       PERU = (FLOAT(IREO)/FLOAT(ITEMS*LIMIT))*100.00
PER1=(FLOAT(IRE1)/FLOAT(ITEMS*LIMIT))*100.00
       PERZ= (FLOAT(IREZ)/FLOAT(ITE +S+LIMIT) ) * 100.00
       PĒRĪ=(FLOAT(ĪREJ)/FLOAT(ITEMS*LIMIT))*100.00
       IF(IPR.NE. "Y")GOTO 915
      PRINT RESIDUAL MATRIX
     PRINT RESIDUAL HEADING
       WRITE (8.901) MODEL
       FORMAT(1H1,/,40%, RESIDUALS- ',I1,' PARAMETER MODEL',//,
             '(09SERVED-EXPECTED)',///)
       WRITE(8,110)
WRITE(8,911)(I, I=1, LIMIT)
WRITE(8,1735)(ABIL(J), J=1, LIMIT)
 1735 FCRMAT(/,3x,'MID-POINT',2X,19(F7.3)/)
WRITE(8,1736)(IR(I,ITEMONE),I=1,LIMIT)
1736 FORMAT(3X,'NO. OF',/,2X,' EXAMINEES',2X,19(2X,I3,2X)//)
       WRITE (8,150)
000
     PRINT PESIDUAL TABLE OF VALUES
       CO 911 I=1, ITEMS
WPITE(6,260) I, (CE(J,I), J=1, LIMIT)
       K=40D(I,L)
       IF (K.NE.0) GO TO 909
       WRITE (8,914)
  939 COMTINUE
  910 CONTINUE
     ENALUATE STATISTICS ON THE RESIDUALS
  CALL STATS (OE, LIMIT. ITEMS. ABIL, IR, ITEMONE, NSUBJ, KCOUNT) WRITE (8,470)
915 IF (IPS. NE. "Y") GOTO 946
     PRINT STANDARDIZEC RESIDUAL MATRIX >
   PRINT HEADING FOR STC RESIDUALS
       WRITE(8,912) DDEL
FORMAT(1H1,///,40x,'STANDARDIZED RESIDUALS- ',I1,
      *PARAMETER NODEL 1,////)
       WOITE (8, 110)
                                                             208
```

VARIANCE OF THE EXPECTED P VALUES

```
WFITE(8,911)(I,I=1,LIMIT)
                            (ABIL (J) J=1 L IMIT)
(IR(I,ITEMONE),I=1,LIMIT)
         WRITE (8,150)

FORMAT (14X, 19(2X, 13,2X)/)

DO 920 I=1, ITEMS

WRITE (8,260) I, (RESID(J,I), J=1, LIMIT)
         K=MOD(I, )
IF(K.NE. 0) GQ TO 913
         WRITE (8, 914)
    913 CONTINUE
    914
         FÖRMAT(/)
    920
         CONTINUE
         HRITE(8,921)
   921 FORMAT (////, 10 X, 'ANALYSIS OF STANDARDIZED RESIDUALS',/, *18X, (ABSOLUTE VALUES)',/,4X,
                        NUMBER
        * INTERVAL
                                  PERGENT
                                                   CUMULATIVE , /, 4X, 30X, 'PERCENT', /)
         TOTPER=PERO
         WRITE(8,322) IREG. PERG. TO TPER
FORMAT(6X, % TO 1',3X,14,3X,F6.2,6X,F6.2,/)
TOTPER1=>ERG+PER1
   WRITE (8,923) IRE1, PER1, TOTPER1
923 FORMAT (6X, '1 TO 2',3X,14,3X,F6.2,6X,F6.2,/)
TOTPER2=>ER0+PER1+PER2
         WPITE (8,924) IRE2, PER2, TOTPER2
         FORMAT (6Y.
                       *2 TO 3',3x,14,3X,F6.2,6X,F6.2,/)
         TOTPER3=> ERG +PER1+PER2+PER3
         WRITE (8,925) IRE3, PER3, TOTPER3
    925 FORMAT (6X, BEYOND 3
                                     ', I4, 3X, F6.2, 6X, F6.2,/)
, CCC
      EVALUATE STATISTICS FOR STD RESIDUALS
         CALL STATS (RESID, LIMIT, ITEMS, ABIL, IR, ITEMONE, NSUBJ, KODUNT)
        CONTINUE
   9.4.3
         FORMAT (56X, ABILITY LEVEL!)
         FORMAT (/, 5X, *ITE M*)
FORMAT (///)
FORMAT (5X, I2, 5X, 19 (F7.3))
    150
   470
    260
         END
 00000
         SUBROUTINE STATS (RESID, LIMIT, ITEMS, ABIL, IR, ITEMONE, NSUBJ, KCOUNT)
         DIMENSION AVELIM (19), ABSLIM (19), RMSLIM (19), RESIC (19,75)
         DIMENSION AVEITM (75), ABS ITM (75), RMSITM (75), ABIL (19)
         DIMENSION IR(19,75), WAVITM(75), WARITM(75)
         WRITE (8,471)
          THE VALUES FOR STATISTICS
   ZERD
          00 1 10 I =1 .75
AVELIM(I) =0
          ABGLIM(I) =0
          RYSLIM(I)=0
          AVEITM(I)=0
          ABSITM(I) =0
          RMSITM(I)=0
                                                                    203
          WAVITM(I) =C
          WABITM(I) = 3
 1013
         CONTINUE
          AVEAVL=3
          AVEABL=3
```

```
AVEAVI=1
       AVEABIED
AVERML=0
       AVERMI=0
       AVE WAV= j
       AVEWAB=J
                  AVERAGE ABILITY LEVEL AVERAGE ABSOLUTE ABILITY LEVEL
CALCULATE FOR
          1:50 I=1 .LIMIT
       00
       DO 1500 JEL, ITEMS
      A VELIM(I) = AVELIM(I) + RESID(I, J)
       BSLIM(I) = ABSLIM(I) +ABS(RESIG(I, J))
      CONTINUE
      AVELIM(I) = AVELIM(I) / FLOA T(TTEMS)
      ABSLIM(I) = ABSLIM(I)/FLOAT(ITEMS)
      AVEAVL = AVEAVL +A VEL IM (I)
      AVEABL=AVEABL+AESLIM(I)
1050 CONTINUE
      A VEAVE=AVE AV L/F (CAT (LIMIT)
A VEABL = AVE ABL/FL CAT (LIMIT)
CALACULATE ROOT MEAN SQUAFE FOR ABILITY LEVELS
      00: 1200 I=1 .LIMIT
00 1100 J=1. ITEMS
      RMSLIM(I) = RMSLIM(I) + ((RESID (I+J) - AVELIM('I)) * *2)
      COTINUE
11 u il
      RMSEIM(I) = SQRT(RMSLIM(I) /FLOAT(ITEMS))
       VERMU-AVERML+RMSLIM(I)
      CONTINUE
      AVERML=AVERML/FL CAT (LIMIT)
CALACULATE FOR AVERAGE ITEM STATISTIC
                                                    AVERAGE ABSOLUTE ITEM STATISTICS
      DO 1400 I=1, ITEMS
DO 1300 J=1, LI, IT
A VE ITM(I) = AVEITM(I) + RESIQ(J.I)
      ABSTTM(I) = ABSITM(I) + ABS(RESID(J, I))
1330 CONTINUE
      AVEITM(I) = AVEITM(I) /FLOAT(LIMIT)
A ESITM(I) = ABSITM(I) /FLOAT(LIMIT)
      AVEAVI=AVEAVI+AVEITM(I)
      A VEABI=AVEABÎ+ABSÎTM(Î)
     CONTINUE
A VEAVI = A VE A VI/FL CAT (ITEMS)
A VEABI = A VE ABI/FL CAT (ITEMS)
CALCULATE ROOT MEAN SQUARE FOR ITEM STATISTICS
      DO 16. ∪ I=1. ITEMS
      00 15:0 J=1.LIMIT
      RMSITM(I) = RMSITM(I) + ((RESID(J, I) - AVEITM(I)) * *2)
      C (NT INUE
      ŘMSITM(I)=SQRT(RMSITM(I)/FLOAT(LIMIT))
      AVERMI=AVERMI+RMSITM(I)
     CONTINUE
      AVERMI-AVERMI/FL CAT (ITEMS)
                   WEIGHTED
AVERAGE
                              LA VERA GE
        RETHOTER
                              ABSOL UTE
      KTOTAL=NSUBJ-KCCUNT
                                                                     210
      00 1650 I=1. ITEHS
          1645 J=1.LIVIT
```

```
WAYITM(I) = WA VITM(I) + (RESID (J, I) *FL CAT (IR (J, ITE MONE)))
      WABITM(I) = WABITM(I) + (ABS (RESID(J,I)) *FLOAT(IR(J,ITEMONE)))
1640 CONTINUĒ
      WAVITM(I) = WAVITM(I) /FLOAT(KTOTAL)
      WASITM(I) = WABITM(I) /FLOAT(KTOTAL)
      AVE WAV=AVE WAV+WAVTTM(I)
      (I)MTÍBAW+BAWBVÁ=BÁWBVÁ
1650 CCNTINUE
      A VEWAV=AVEWAV/FL CAT (ITEMS)
      AVEWAS=AV=WAB/FECAT (ITEMS)
PRINT OUT FIT STATISTICS FOR ITEMS
WRITE (8,17,10)
1700 FORMAT (5x, SUMMARY OF FIT STATISTICS
                                                     FOR ITEMS .//,
                                                     POCT MEAN . 8X.
                              AVERAGE ABSOLUTE
     *5X,'ITEM
                   AVERAGE
                              WEIGHTED ABSOLUTE .
     **WÉIGHTED AVERAGE
*5%, RESIDUAL
                                                     ,/,
                                RESIDŪAĹ
                                                     SQUARE RESIDUAL 1.6X.
     * * FESIDUAL
                         AVERAGE
                                    RESIDUAL 1)
      00 1715 I=1, ITEMS
WRITE(8,1713) T, AVEITH(I) . ABSITM(I), RMSITM(I), WAVITM(I), WABITM(I)
1710 FORMAT(6X, 12,2X, F7.3,5X, F7.3,9X, F7.3,14X, F7.3,11X, F7.3)
      K=MOD (I.L)
      IF (K. NE. 3) 60 TO 1735
      WRITE(8,1702)
FORMAT(/)
17)2 FORMAT (/
1705 CONTINUE
1715 CONTINUE
PRINT AVERAGES FOR ITEM FIT STATISTICS
      WRITE (8,1720) AVEAVI, AVEABI, AVERMI, AVEWAV, AVEWAR
1720 FORMAT (/. 2X, 'AVE FACES', F.7. 3, 5X, F.7. 3, 9X, F.7. 3,
     +14X,F7.3,1X,F7.3)
 PRINT ABILITY LEVEL FIT STATISTICS
      WRITE(8,471)
WRITE(8,1721)
1721 FCRMAT(4) X, SUMMARY OF FIT STATISTICS FOR ABILITY LEVELS .//; +5_X, ABILITY LEVEL(MID-POINTS) ./)
      WRITE (8, 1, 750) (I, I=1, LIMIT)
      WRITE(8,1722) (ABIL(J),J=1,LIMIT)
1722 FCOMAT(17. FIT', 14, 'STATISTIC', 15X, 15(F7.2, 1X))
1750 FQSMAT(25X, 15(5X, 13), /)
      WFITE(3.17 (J) (A YELIM(I),I=1.LIMIT)
1760 FORMAT (1X, "AVERAGE RESIDUAL", 12X, 15 (F7. 3, 1X))
      WRITE(8,1770) (ABSLIM(I), I=1, LIMIT)
1770 FORMAT (//, 1x, 'AVERAGE ABSOLUTE RESIDUAL', 2x, 15 (F7.3, 1X))
WRITE (8, 1780) (RMSLIM(I), I=1, LIMIT)
1783 FCRMAT(//, 1X, 'ROC1 HEAN SQUARE RESIDUAL', 2X, 15 (F7.3, 1X))
 PRINT AVERAGES FOR ABILITY LEVEL FIT STATISTICS
            (8,471)
(8,1790) AVEAVL, AVEABL, AVERML
      WRITE
      WRITE
471 EGRMAT (///)
1790 FCRMAT (5X, OVERALL VERAGES
                                            AVERAGE RESIDUAL = .F7.3.3X.
     * AVERAGE A ESOLUTE RESIDUAL = 1. F7.3,3x, RCCT MEAN SQUARE
     ** RESIDUAL= *,F7.3)
      āND
```

RESIDUAL ANALYSES OF LOGISTIC TEST DATA DATE: 82/04/09. (VERSION 3A)

PROGRAM BY LINDA MURRAY RONALD HAMBLETON ROBERT SIMON

DEVELOPED AT THE UNIVERSITY OF MASSACHUSETTS
SCHOOL OF EDUCATION
UNDER A GRANT FROM NAEP

NAEP DATA-MATH RESULTS OF 13 YRS. OLD BOOK 1

58 ITEMS / 2422 EXAMINEES / 12 ABILITY GROUPINGS

EXPECTED P VALUES-1, PARAMETER MODEL

CA TESICR	.γ		1	z		3	-44	5	. ε	7. A	BILITY	LEV EL	10	11	12
MID-POI	MI	•	.75	- ¿.	25	-1.75	-1.25	75	35	٠2٤	• 75	1.25	1.75	2.25	2.75
EXAMINE	ES		14	5	4	91	224	3 25	£ 7 3	467	339	245	102	44	3
IT : 53 4 5 6 7 8 9 7 1			24821 391 391 391 391 391 391 391 391 391 39	467 111 111 113 133	72146657	57833267 57833267 57833267 57833267 57833267 57833267	878 879 211 3129 1127 1178	78042606292	81555543460 8994623628	9,995,775139	998823764953 99882376643 9978856849	99899662 9919662 896621 9919662 9919662 9919662 9919662	80998333427 0098371577	9993658718	999961930446
11234567116711290		. "	.63311932 .476323775 .1765	. 4	71 28 17 86	83848344444444444444444444444444444444	839 828 760 744	99439442 98885442 99439442	.994377084 99977084	.976359 .976359 .976359 .976359 .7768	98897989 9776689 98897469 988919	999881427728 9988839886 9988888	99999886222	999000000000000000000000000000000000000	9990000076663
2:23,2567 89 .			566237 52237 52237 50113 50113	3000000 3000000	61 7 31 79 15	157443 17743 1053 1331 1012 1012 1012 1012 1012 1012 101	299 299 455 017	2348 31748 7769 31765 00765 002	4999 949 2338 723 11316 1137	637 9793 348 6287 2171 22	.7833559 .78335418 .7834164 .784164 .7864	89662547004 49662547004 	5983510980 5974864825 557555	9965 83775 609 947.639	9919907 8991990 89683 69165 81774
3123 3135 3135 3137 3137 3137 3137 3137 313			1462365 y2542 146238122542	. 2 . 1 . 7 . 1	9514 (56394	3109000423 3109000423	263 1443 1904 1904 1948 1948 1948 1941	9543695696 6824377749 6829551654	7426 7426 7426 7427 7427 7427 7427 7427	857485656 649765696 7236697	87.099464989 87.098413163 87.69855988	96205882U1 98799446520	9128 9128 9129 9137 9137 9131	99494 99614 99614 99614 99616 9966 9966	987396146040 997396146040
4 44 567 89 0			. 13 . 10 . 17 . 13 . 13 . 13 . 13 . 13 . 13 . 13 . 13		17 15 17 153	· 0 3 7 4 6 7 7 6 4 1 6 7 7 6 4 1 6 7 7 6 4 1 6 7 7 6 4 1 6 7 7 6 4 1 6 7 7 6 4 1 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	. 399 . 3392 . 35382 . 196 . 1927 . 190	8 82187 1 5724537 1 59524537 1 1 2 2 7 1 1 2 2 7	· 1367 · 78567 · 3267 · 326	2 23355 46291	3 6 3 3 5 1 2 6 1 9 6 3 3 5 1 2 6 1 1 0 8 6 9 1 2 6 9 4 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	• 9 15 3 4 2 9 5 9 15 3 4 2 9 5 1 5 3 4 2 9 5 1 5 3 7 9 5 1 5 9 5 1 5 9 5 1 5 1 5 1 5 1 5 1 5	6 5744566232 6 5744566232	.7 997043 .997043 .997043 .997043 .9923 .9923 .9923	2 402450 850 8 9998454159 9 99964159
5523			1	. • 1	12 13 144 144	• (21 • 13 • 43 • 77	. 6.5	15 19 7,40 500	. 1 (3 . 559 . 833	.168 .693 .898	.252 .796 .939	.383 .873 .964	223 279 261	.657 .955 .988 .977	.771 .974 .990
`															

ERIC

Full Text Provided by ERIC

213

		the second secon				
	, , , , , , , , , , , , , , , , , , ,		• ± .6 • ±/<	.267 .39L .648 .764	. 52 8	.663 .775 .909 .946
U BEER (de , e	1 + 6	5	65 9 336 4711 6771 67	898 - 939 772 - 7356 639 - 739 639 - 995 216 - 668 534 - 668 919 - 921	913 • £28 • 996 • 943 • 587	.979 .988 .948 .970 .894 .937 .991 .991 .714 .814 .861 .916 .984 .990 .973 .984
	.013 .022 		671 7863 7833 8775 8567 5566 3657 5566 3657 1359	.396 .537 .9151 .857 -9152 .8591 .75397 .8591 .2447 .2170 .3798 .2170 .969	. EE 9 . 9572 . 6446 . 2566 . 366 . 473 . 582	.780 .862 .971 .9840 .974 .9960 .9745 .9945 .9445 .503 .6446 .503 .9960 .9960 .9960
			559 6998 833 8998 721 8247 711 8247 711 825	26	23 91 1 925 23 91 1 925 25 95 6 5 7 95 6 7 95 7 95	.657 .771 .958 .990 .977 .987 .757 .845 .926 .988 .926 .988

										A separate services of the ser
CATES CRY	1	2	3	4	5	6	7	BILITY	LEVEL 9 10	11 12
HID-POINT	+2.75	-2.25	-:.75	-1.25	75	25	.25	75	1.25 1.75	2.25 2.75
NO. OF EX MINEES	14	54	91.	2 24	325	503	4 67	339	245 102	44 3
I 1EM - 2345	. 266 . 429 . 543 J. 000 . 071	665	41 8 41 8 41 8 41 9 41 9 41 9 41 9 41 9 41 9 41 9 41 9	.6.2 .844 .893 .076 .258	77.8 99.2 94.5 .17.8 .375	957 952 970 380 6235	942 974 991 6557 351	982 985 994 870 903	.971 1.000 .988 1.000 .992 1.000 .939 .900 .939 .775	977 1.000 1.000 1.000 1.000 1.660 .977 1.000 .932 1.000
7 8 9 10	143 571 3.033 214	111 111 555 185 2 2	121	183 201 585 105 491	22.5 64.5 6.98	.338 .268 .829	767 296 934	543 767 375 976	70 € .653 .84 5 .912 .522 .637 .988 \$2.990	.932 1.000 .977 1.000 .977 1.000 .977 1.667 1.000 1.000
1123 1234 156 167 1189 12	.071 .143 .071 .0743 .0729 .0001 .071	55754 44492 33334 1119	8.662.13.94.5.4.5 8.667.5.54.5.4.5 9.667.5.54.5.4.5	886 8163 87565 7765 957	963678564435 96319564435 8656332	98228 9768 9768 9371 9371 643 643	9965 9989 9974 9974 9774 9777 14717	99484 99967 99667 9667 9667 9667 9667	.99 £ 1.000 .99 £ 1.000 .98 £ 1.000 .98 £ 1.000 .98 £ 1.000 .98 £ 1.000 .98 £ 1.000 .98 £ 1.000 .99 £ 1.000 .99 £ 1.000 .99 £ 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
223 223 255 267	1. 009 .571 .143 .000 .871 .2 (6	. 194 . 148 . 129 . 193	.944 .868 .1657 .121 .549	.67 .853 .268 .170 .112 .513	.20 ú .90 5 .25 2 .151 .268 .643	.489 .946 .272 .219 .475 .672	700 957 334 323 623 762	.894 .985 .428 .442 .717 .873	947 1.601 984 990 600 755 584 784 878 912 245 214 233 382	1.000 1.000 .932 1.000 .932 1.000 .935 1.000 .955 1.000
27 28 29 30	.071	• 1 36 • 619 • 1 35	. 143 .011 .187	.152 .022 .210	175 068 157	. 195 . 191 . 328	230 135 527	.112 .245 .301 .654	• 44 1_ • 524	.636 1.000 .364 .667 .727 1.000 1.000 .667
31 33 33 35 35 35 35 35 35 35 35 35 35 35	2143 01249 101249 11249 1129 1129 1129 1129 1129 1129	2 (2) 99 6 8 3 4 9 7 2 1 1 1 2 3 9 6 8 3 4 9 7 3 1 7 1 1 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.46.34.47.5.12.2 	5 85 45 213 11 42 18 85 363 78 42 18 42 14 5 C	9286261124 5329522664 5.329522664	735369 13567 16369 1522 1526 1631 1631 1631 1631 1631 1631 1631 16	85557449 855779127149 86277149	917 -83165 -9617 -971 -9773 -9	947 1.000 935 .580 637 .614 996 1.000 910 .961 208 .796 628 .796 6992 1.000 833 .863 .931 .990	977 1.060 977 1.667 1.000 1.000 1.000 1.000 318 0.000 1.000 1.000 1.000 1.000
123456789	0146 0128 0128 0147 0147 1473 1474 1473	3 (43743 3 (43743 3 (43743 3 (43743 6 (44944366837 023314466837 0344	06883 38:3711 0980 09140 1014213	5 00602N8 093 62422 113 440 0 5652111 028	146772 47072 41891 41891 41891 41895 41895	22449982646 7879252201 1169	3745 8745 8745 8637 8637 8637 8637 8637 8637 8637 8637	.63.6 .95.9 .96.3 .67.8 .67.8 .67.8 .63.3 .67.8 .63.3 .68.3 .69.8	.8866 1.000 .977 1.000 .977 1.000 .978 1.000 .9555 1.000 .9557 1.000 .9557 1.000 .9545 1.000
51 52 53 54	. 286 . 357 J. 000	. 463 . 463 . 674	• 121 • 418 • 55 c	• 1 7 • 473 • 655 • 43 8	.129 .517 .769 .578	137 575 619 765	.163 .638 .878 .844	.206 .687 .903 .888	.253 .4;2 .755 .731 .955 .551	.568 1.300 .750 .333 1.000 1.000 1.000 1.000

ERIC Full Text Provided by ERI

į	4	3, , , , , , , , , , , , , , , , , , ,	21 Acres 3
123 45 6 76	1234567890	123456759J	6789
			-
-	,		
ý	;	:	,
		• • • • • • • • •	•
28 35 6 28 27 27 27	62236047434	214612450027	2 (37 67 50
7 6 1	4611343	30493779	1
	0		ů.
		0741	. 1
1933 1933 1931 1931 1931 1931 1931 1931	374073635	11,539,683,457	13.09
5 • • • •			
141691519 102029	046154466647	3469486253	14 14 14 14 14 14 14 14 14 14 14 14 14 1
1 3 1	49443668	45:07512	3.1
4 645 40	3530	2 8 4 2 1 4 5	. Ù
37 63 13 15 1	68311806 L13	5654521311	22
		-	
	•		
121 51 57 57 50 50 50 50	05562233440 0280	53256262624	13 17 16 15
7 98427	SO GENERADOS	63162286	4 5 8
•		• • • • • • • • • • • • • • • • • • • •	:
567171	16774.18 338	7439522676	100
37 75 96 17 14 15 10	67 12 143 166	9.695696	54 95
		•	•
8 2 6 3	787 53116	64062307	2
638649 42140 154	78744982646	9744985979 17149	626 86 357
		•	:
698495	89865127	56981	1236
067385057	101 101 101 101 101 101 101 101 101 101	1651913	1
	•	•	• •
27995979	699676683898	9459910 9459910 945989	67 23 44 82
552476	93338250	07608423	3
•		1	
	900000000000000000000000000000000000000	09170	3
125 51 51 61 61	141 893 335 300 800	08, L6940830 08, L6940830	61 162 29 12
1		1	
•			
5675000887900	8877 8869 8869 8869 8869 8869 8869 8869	777 777 800 816 816 800 800 800 800 800 800 800 800 800 80	000
000679	77.5		
1.1.1.1.1.	1.1111111111111111111111111111111111111	1.1011	1.
333000000000000000000000000000000000000	000 000 000 000 000 000	000000000000000000000000000000000000000	0 0 0 0 6 6 0 0 6 6
3000	00000770	0000007	0 7 0
		_	

RESIDUALS- 1 PARAMETER MODEL (OBSERVED-EXPECTED)

4												
2"	1		3		5	6	ABILITY 7	Ĉ	9 .	10	11	12
MID-POINT	-2.750	-2.250	-:.75 (-1.250			.250			1.750-	2.250	2.750
NO OF EXAMINEES	14	54	91	224	325	50 3	467 .	33 9	245	102	44	3
ITEM 12 34 56 7 8 9	. 0622 - 0624 - 06160 - 05160 - 45760 - 05160		11479 UT 68 11479 UT 68 115964738 115964738	069 .006 137 079 .079 .173 .072	011 015 144 1018 018 018 023	9115500	018 .045	0000 0000 11/502 	- 0 3 1 - 0 3 1 - 0 0 2 - 14 4 9 3 - 0 0 3 7 - 0 0 6 6 2 - 0 0 6 2 7	.016 .010 .010 .033 .0033 .00442 0013	013 .0110 .0144 .0145 .0944 .0213	010 010 035 027 027 0117
112 123 145 167 178 120	599 3999 2296 2010 6104	- 192 - 264 - 2165 - 1134 - 1322 - 11795	037 089 1229 0136 0214 1650	133620 000221193 	.022 .0216 .0004 .0010 .00112 1193	0121 0227 0031 0031 0051 0051 0051 0051 0051	014	0018 00160 00160 00100 0000 0000 0000 0000 0000 0000 0000 0000	.0362 031 031 0312 0412 0497	0100 01100 011112 0155440 0000 0000 0000 0000 0000 0000 0	0110 0110 01110 01110 01110 0100 044	.010 .010 .010 .010 .010 .013 .013 .024
323 45 6 78 99 0	- 0 4 5 1 1 1 2 5 1 1 5 6 6 1 1 5 6	077 .014 .0199 0607 0114 .070	112 . 194 . 134 015 . 2016 . 216 . 116 . 287	17051 -0161	10070446957 10070446957		- 06139 - 0525 - 0525 - 0501 - 0237	1004 1004 1004 1004 10036 1003 1003 1003 1003 1003 1003 100	1366346687 100335687 100351156 10035687	.0023 .0023 .0026 .0020 .0020 .0020 .0020	057 057 0777 079233 015562 -365241	0110 010 010 010 010 010 010 010 010 01
312 33345 3345 337 3394	. 068 - 069 - 079 - 333 - 132 - 180 - 315 - 02J	10450 10450 1050 1050 1050 1050 111	- 0163 - 0779 - 02475 - 11683 - 12866 - 11686	65.463.63.042 0.76.0229.63.042 0.76.029.63.042 0.76.029.63.042	25997 25512637 005512637 005512637 0055747		5 2665003 2 5 1065003 2 5 106500 2 5 106500 3 106500 4 106500 5 10	193 193 10013 10013 1005 1005 1005 1005 1005 1	083 083 089 0033 0033 0033 004 000 000 000 000 000	3684 3684 3614 3614 373 373 373 373 373 373 373 373 373 37	010 010 013 0416 0416 084	01032 01032 00119 00119 00114 001120 001120
41 .	013	. (15	. 00-6	602	044	029	Çu Ç	016	.065	.145	.106	.138
42 42 ERIC	. 135 - 1034 - 1034 - 1061	.027 - 133 - 153 - 153	71 u 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- · · · · · · · · · · · · · · · · · · ·	018 022257 0574	0 11 0 46 0 434	000 010 024 024 026	- 0 07 - 0 0 10 - 0 0 14 - 0 0 44	- 13 2 3 6 4 1 3 2 3 6 6 4 1 3 2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	010 056 013 077 148	.036 063 043 043	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Full Text Provided by ERIC				,		21				٠.		

217

 2 74 567390 12345678 4 44 44445 555555555	135 1033 1263 12633 12633 13417 1615 1615 1711 1711 1711 1711 1711 17	2 95545426 0 94554527 0 94554527 0 945545352 0 9455452 0 945545				1 55634451 1 05463120 31244670 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		28 1955 48 U89 114 BODO 1000 1100161 1100161 1100161 1100161	*107 *003	· 26 n0 10 10 10 10 10 10 10 10 10 10 10 10 10
ITEM 123456769911127	# EL # A A A A A A A A A A A A A A A A A A	I E 042185554647775544647998855885578857578857585788575857585758	AA6288.147.484513857873711.28669929546696	ITEMS E ROOT SQUA	R 100,000 100 100 100 100 100 100 100 100	DUAL	# VU110	· ·	TUD	

ERIC

•

				\$	
		• 0 43	.049	.001	.029
37	1?			-:858	:892
. 33	012 111	: 122	:152		.072
43	:11	.052	. 059	.000 .001	.030
41	.331 .12	• 0 4 8	.063 .033	-:005	.048 .0312 .0123 .0234 .033
4 <u>2</u> 43	• 4 1 2	• 7 44	. 0.49	GC1	.020
43	.615		.057	<u>0</u> ço	• 234
45	112	. 5 3 7	. 339	. 0 0 1 . 0 0 1	.032
45 45 47	-312	065	• U 6 i	.011	.070
47	4	• u 91	. 0 61 . 113 . 0 47	.0.0 .001	.015
. 48	612	• L 35	. ILU	.001	• 0 40
51	517		.042 .099	0(1	- 057
55555555555555555555555555555555555555	~ 7 1	. 0 86	• 9 9 9	.0C1 .9C1	.101
52	-• <u>č</u> įį	• <u>20</u> <u>2</u>	• 254	0(1	• 0 3 1
53	325	* 6 4 7 7 4 8	. 662	0(1	.029
54	- 03 j 025	. ŭ 62	.054 .062 .071 .050	. 001	.051
56		. 0 2 6	• <u>05</u> 0	000	.009 .074
ź Ž	.526 .034	2058 2044 2044 2044 2058 2074	.076	.001 000	017
58	. 0 314	.034	. 051	• • • •	
AVEDACEC	. ;; 1	. 165	.086	.000	.044
AVERAGES		• • • • • • • • • • • • • • • • • • • •			

SUMMARY OF FIT STATISTICS, FOR ABILITY LEVELS
ABILITY LEVEL (10-POINTS)

FIT STATISTIC AVERAGE RESIDUAL -	-2.75 .018	- 2.25 .009	-1.75 ,	-1.25 002	5 75 006	6 -•25 •002	7 •25 •005	.75 .002	1.25 005	10 1.75 002	11 2.25 001	12 2.75 000
	RESIDUAL .120		•0.93	.061	.c 46			.042				.096
	RESIDUAL176 -		.112	:081	• ປ 65	.036	.036	.059	.071	.082	.099	£1:80

ANDALL AVERAGE RESTOUALE .JC1 AVERAGE ABSCLUTE RESIDUALE .065 ROOT MEAN SQUARE RESIDUALE .094

STANDARDIZED RESIDUALS- 1 PARAMETER MODEL

	1	2	3	4	5	6	ABILITY	Ĉ	9	10	11	12
MID-PCINT NO. OF EX MINEES	-2.750 14	-2.250 54	-1 • 7 5 (91	-1.25U 224	750 325	250 563	.250 467	. 750 339	1.25) 245	1.750	2.250 44	2.750
ITEM 12 34 56 7 89	. 4566 4567 2311 1. 73637 3667 061	-1.075 -1.075 -1.075 -2.295 -2.495	-3.118 -1.969 -2.514 -2.431 6.219	-2.2394435 -2.2394435 -5.35514605 -2.36513 -3.56	-5.543 -3.636 -857	2.5669 1.6693 3.36757 -1.55417 -2.1939	-2.116	2 . 6 6 6 7 1 2 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6		1.0155 27155 1.016631 1.01667 1.01667	8487 6677 1.1760 1.4820 1.4235 1753 446	174 174 1351 2534 2534 2174
11 12 13 14 15 16 17 18 19	-3.136 -2.994 -1.757 -2.164 3.271	-4.126 -3.875	634 -2.393 597 2.452 -1.712	-1.5568 -1.5568 -1.5562 -1.5625	5.503.625.692 6.4923.625.692 	10549165 025657165 0256573094 2266573094 2266573094	21.769 1.789 2.7865 2.7865 2.78678 2.1568 2.16995		931 -289 -1168 1-1685 -2-645 -2-587 2-3559	1.015 1.015 1.015 1.019 1.019 1.1127	.6667 .6667 .6667 .6667 .6619 -1.184 1.387	.174 .174 .174 .1774 .1774 .1201 .1201 .1201 .1201
1234567 89 u	91 5 93 3 9 9 1 5 2 5 9 1 5 2 5 1 5 6 4 9 1 2 2 3 3 7 9	-1.918 -6689 -1.145 -1.145 -7739		1.667 447 7.446 -1.156	3.742 .160 -1.893 1.686 .411 6.413		2.860 -1.646 -2.612 -1.543 -3.2796 1.487 -2.143 -622	- 0 66 - 9 37 - 1 6 33	-1.232 1.360 -3.531	3.0266137798895299	1.627 .667 1.371 1.728 .6107 2.147 -5.180 2.100	147715855520 1555595520 1-691
323 334 336 336 339	1.05529 725529 1.062996 4.029969 4.02996999 7.725	1.415 1.491 1.471 7.481 7.156	3152184633 12.232184633 12.495437 12.495437	-1.033 2.886 13.225 2.554 -3.695	2.572		1.67 467 1.67 1	12 · 7 5 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-1.453	- 038	- 1 € 3 - 1 € 6 7 - 1 · 2 2 7 - 5 · 8 1 0 - 6 2 6	10750 10750 11742 126551 1424 1424 1424

```
1.73388
7233870
-3.29716
-3.663571
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  92732697674
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.011
1.021
1.055
1.055
1.058
1.058
1.058
1.058
1.058
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2-1519
2-519
2-516475
2-169
2-169
2-169
2-169
2-169
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -2.5489
-1.0093
-1.1199
-1.4529
-1.6539
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.251
1.257
1.256
1.266
3.369
2.310
4.596
-.773
1.000
                                                                                                                                                                                                                                                                                                                                                                   3463655426
32552655426
12.552655426
                                                                                                                                                                                                                                    - 316
- 316
- 365
                                                                                                                                                                                                                                                                                                                                                      -1
-2
-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -2.465
-7.65
13.524
1.169
-2.641
-1.658
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -1.243
-6.537
.727
1.010
2.000
.047
1.532
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -2.227
-7.130
-2.012
-1.028
2.011
.093
2.280
1.396
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                -2.309
-4.968
-2.788
-4040
3.055
-932
3.573
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -4.198
-5.518
-.772
-.683
2.531
-.220
3.476
                                                                                                                                       -.300
-2.413
-1.393
1.353
-.961
1.609
                                                                                                                                                                                                                                                                                                                                                6.687
5.544
1.544
-2.566
-1.190
-1.233
-1.658
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           5.72u
5.992
1.449
-.571
-.329
-3.732
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2 · 5 1 2

- 1 · 4 3 5

- 2 · 4 7 6

- 2 · 4 7 6

- 2 · 4 7 6

- 2 · 4 7 6

- 2 · 4 7 6

- 3 · 4 7 6

- 3 · 4 7 6

- 3 · 4 7 6

- 3 · 4 7 6

- 3 · 4 7 6

- 4 · 4 3 6

- 5 · 4 7 6

- 6 · 4 7 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4 3 6

- 7 · 4
                                                                                                                             2.31J
3.141
1.127
-1.474
-.396
1.756
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .945
.179
.1791
.204
.189
555555555
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .481
```

ANALYSIS OF STANDARDITED RESIDUALS (A330LITE VALUES) INTERVAL NIMBER PERCENT CLMULATIVE FERCENT

			FERCENT
(TO 1	2 77	3 9. 80	39.80
: TO 2	160	22.99	62.79
2 10 3	117	16.81	79.60
3 EYOND 3	1 42	20.40	190.08

SCHHARY OF FIT STATISTICS FOR ITEMS

IJEH	AVERASE RESIDIAL	AVERAGE ABSOLUTE	ROOT MEAN SQUARE RESIDUAL	WEIGHTED A VE RAGE RESIQUAL	WEIGHTED ABSOLUTE AVERAGE RESIDUAL 1.748
1 2	- ú/1 1,9	1.464 .723 .781	1.810 1.083 .941	.631 .476 .642	• 740 • 888
4 5	.244 .117 .05.	3.112 1.739	3.726 2.117 2.223	• 114 • 431 • 012	4.181 2.273 1.606
.7 -7	1.952 .953 .677	1.797 1.697 3.802	1.753	074 -1.320	1.448 3.990 2.061
1 1	675	2.126 1.596 1.584	2.722 1.96; 1.967	.458 .870 1.200	1.987 1.590
11 12 13	.029	1.528 1.651	1.914 2.013 1.505	1.115 1.247 .882	1.491 1.807 1.223
145	1035	1 • 25 u • 989 1 • 1 26	1.307 1.33L	.629 .146	• 960 1 • 182 1 • 976
17	142	1.859	2.195	459	1.570

					•
10	226	.97e	1.133	17 U	1.027
	15		2.301	• 56 3	3.031
19 20 21 22 23	• 0 5 5	3:38t ·	4.059	.591 .361	4.208 3.665
21	352	3.084 .668 2.845	3.716 .966	 4 . 4	.726
23	1.3)9	2.445	3.250	· 253 • 073	2.841 1.509
25	1.027	1.884 1.154	2.322	.118	I •:387
25	078 -634	2.318	2.915	918	2.387
25 27 28	1.305	• 893	1.121	100 1.770	• 56ù 4 • 520
28 29	1.30	4.601 •920	4.946 1.385 2.392 1.017	 3 15	1.200
3.5	.329	1 · ģ Ž l • 8 l 4	2.392	141 .235	1.857
31 32 33 34	224	2.056	2.234	020	2.040
33	. 483 . 256	1 - 1 34	2.234 1.553,	.106 241	1.109
	1.035	865	1.032 2.695 7.576	685	2.269
35 36	1.935	2.363 7.656	7.576	-2 • 69 9	6.742 1.178
37	- 053	1.355	1.637 2.954 3.505	165 1,230	3.034
36 39	053 727	2.631 3.374 1.722	3.505	750	3.121 1.981
43	.071	1.722	1.922 1.491	·•406 ••394	1.190
41	233	1.163 .602	. 5 29	.059	- 583
43	.214	. 568	.973 1.697	• 165 • 214	.834 1.419
44 S	859 426	1.577	1.279	.158	1.311
45 46	. 815	1.161 2.306	2 128 4.772	377	2.005 4.522
47 48	1.893	4.312	1.947 1.391	2.232	915
49	645	1.201	1.391	• 07 2 • 264	1.584 .710
<u> 5</u> Ú	613 1.536	3.249	963 3.497	1.204	3.056
5 <u>1</u> 5 2	555	5.026	5.406	566 7(7	3.747 1.542
• 3	u23 395	1.372 1.190	1.515 1.390	.322	1.160
54 55 56	119	1.832	2.145	-• 7 <u>(6</u>	2.325 .339
<u>.56</u>	. 166	2.479	.719 2.858	.087 657	3.261 .671
`57 58	U25 .158	.834	944	ŽĆO	.671
		1.910	2.218	. 233	1.977
AVERAGES	.277	¥ # 3 # 0	-,		

SUMMARY OF FIT STATISTICS FOR ABILITY LEVELS ABILITY LEVEL (MID-POINTS)

FIL STATISTIC AVERIGE RESIDUAL	-2 • 7 5 • 5 4 3	-2.25 .842	-1.75 .660	-1.25 .327	75 129	6 +.25 .254	7. 25 398	.75 .170	1 • 25 - • 0 96	1.75 .113	2.25 .155	2.75 074
	1.63(•		•					1.646		.693
O SOUL AND COURSE DESTRUM	2 - 17 -	7. 19.3	3.284	3.716	3.195	2.42	1.979	2.699	2.771	2.231	1.863	1.355

OVERALL AVERAGES AVERAGE RESIDUAL= 1.277 AVERAGE ABSOLUTE RESIDUAL= 1.910 ROOT MEAN SQUARE RESIDUAL= 2.534

EXPECTED P VALUES - 3 PARAMETER MODEL

•					_		7 AB	ILITY L	EV EL 1	0	11	12
CATEGORY	1	٠ 2	3	4	5		.25		•	.75	2.25	2.75
MID-PCINT NO. OF EX MINEES	-2.75 2 4	-2. 2 5.	-1.75 - 114	194	75 318	25 443	509		4.6	gĿ	32	11
ITEM .	. 192	. 234 . 597 . 7. 14	.435 .733 .832	.621 .638	.786 .908 .947	694 950 972	951 973 985	986	99 û 99 û 99 û	990 990 990 990	•996 •996 •990	990 990 990
3 5 6 7 8 9	.587 .043 .113 .175 .216 .467 .151	0 74 1 25 1 76 2 11 5 11 1 19	15 6 17 6 17 6 17 5 12 5 12 5 13 2 4	0633 12349 6147 502	133 380 235 647 697	337 590 238 275 685 226	.765 .765 .323 .367 .725 .297	905 473 -530 -761	666 725 794	990 985 828 872 624 644 990	990 924 948 851 757	.990 .969 .980 .874 .845
11 12 13 15 16 17 18	. 335 . 286 . 293 . 274 . 298 . 612 . 616	5 63 4 65 4 15 4 12 4 12 3 14 1 19	73 12 73 12 65 13 61 37 61 8	91639 81639 814336 77436 9167	97514727 99314727 9654271 66247 6374	990 98743 9963 9963 99118 99118 9918 9918 9918 9918	9934 9934 9845 9845 9444 1168 7683	990 990 990 983 974	990	990 990 990 990 990 990 990 990 990 990	990 990 990 990 990 9947 699	990 9990 9990 9990 9990 9966 99669 9990
21223	. 013 . 675 . 257 . 114 . 363 . 158 . 148	0 257 257 257 257 257 257 257 257 257 257	02559 0259 0259 0259 0147 0469 0469	- 433	1956 1966 1967 1967 1967 1967 1967 1967 196	267 213 418 715	.214	927 9407 432 7527 827 827 827 827 827 868	98 1 2 3 5 7 6 9 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9899 9899 80352 8352 9398 8110 836	990 9943 9943 9977 9977 9966 97665	.871
11233344556 3357389343	. 16 . 21 . 12 . 77	2 · 21 2 · 23 2 · 23 2 · 23 2 · 21 2 · 21 2 · 21 2 · 21	52 - 1178 - 1217	23 19 19 19 19 19 19 19 19 19 19 19 19 19	28 25 94 521 61	5 421 3 33 9 62 9 63 2 27 0 27	650 974 974 212 374 940 739	983 784 212 496 980	95984126055 95984126055	9852 9852 995 2135 2490 86135 8713 98135	.990 .919 .217 .630	990 9926 9943 9436 9436 9900

-22-

ORSERVEC P VALUES-3 PARAMETER MCDEL

CATES (RY	1	2	3	4	· , 5	6	7 A	BILITY	L EV EL	1 C	11	12
MTO-PCINT	-2.75	-2.25	-1.75	-,1'-25	75	25	.25	.75	1.25_	_1-75	2.25	2.75
NO . OF EX IMINEES	-24	55	114	1 94	318	440	509	368	248	90	32	11
I TEM 2 3 5 6 7 6 7	. 250 . 542 . 792 . 005 . 087 . 759 . 125	249 663 663 663 663 663 663 663 663 663 66	.447 .716 .8147 .2465 .2459	.613 .6357 .6977 .2247 .22327 .2337 .113	.786 .9062 .148 .3782 .18526 .189	94645 96645 96645	. 9476 . 976 . 6552 . 348 . 5765 . 381 . 6795	.986 .986 .999 .899 .917 .503 .803 .978	. 98 8	1.000 1.000 .978 .667 .651	969 1.000 1.000 1.000 875 969 938 719	1.0 CO 1.0 CO 1.0 CO 1.0 CO 1.0 CO 1.0 CO 1.0 CO 1.0 CO
12 115 115 116 119 120	167 042 083 123 167 550 167 550 167	. 3460 . 3460 . 34640 . 33600 . 336000 . 3360000 . 3360000 . 3360000 . 3360000 . 336000000 . 33600000000000000000000000000000000000	.807 .607 .632 .737 .614 .623 .400 .053	94322 • 8922 • 7778 • 7778 • 1557 • 1557	.975 .965 .925 .926 .655 .6311 .311	984 9784 9864 9939 9756 9756 977	9962 988 9747 9335 7422 7819	9989958 9989958 9989958 9959959 99599	.996	1. GC 0 1. GC	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2012 156 769 J	3 · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	270 220 220 200 200 200 200 200 200		.856 .289 .196 .149 .531 .015 .186	.145 .9445 .2445 .12644 .1963 .189	441 939 3227 652 653 110 3	7457 92919 92199 92148 92148	9778 -978 -4217 -764 -1050 -277	97 8 8 9 5 9 8 5 9 5 9 5 8 6 7 2 3 2 7 8 6 7	1.000 .989 .789 .782 .956 .333 .411 .900	1.0009990530 0.009990530 1.009990530 1.009990530 1.009990530	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1234567899	233 233 253 253 255 257 257 257 257 257 257 257 257 257	180 840 560 160 200 180	. 30°7 . 24 6 . 19 7 . 61 7 . 41 3 7 . 13 5 8 . 43 0	.2912 .1933 .455 .187 .384	711174 926479442 9521645 9521665	7314 33662 95830 95830 8711 87110	94424665552 6647665552 13977	913 837 5978 810 193 514 9811 968	9572 9572 95873 9693 9693 9633 9633 9633	1.600 1.000 .789 1.000 .556 .178 .733 1.833	969 9360 1.000 1.000 3130 1.000	1.000 1.000 1.000

RESIDUALS- 3 PARAMETER MODEL (08SERVED-EXPECTED)

•	1	2	3 "	4	. 5	6	ABILITY	FEÀ EL	9	10	11	12
MID-POINT	-2.750	- 2.250	-1.750	-1.250	750	250	.250	. 7 50	1.250	1.756	2.250	2.750
NO. OF EX MINEES	24	5 i	114	194,	318	440	509	36 8	248	90	32	11
I TEM 12 34 56 7 8 9	. 0304 . 0304 . 0432 . 0432 . 0433 . 0443 . 0926	144 155 135 135 135 131 120 120 171	2464982904 3 (200) 265524 3 (200) 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-0025 -0115 -0116 -0117 -0116 -0117	-00108 -00108 -00108 -00155 -001354 -001354	00195 0125 0125 021492 0207	00053 00053 0006 -00076 -00444	- 0102 - 0010 - 0010 - 002238 - 0008	1100 1100 1100 100 100 100 100 100 1111	021 0010 0010 0010 -019 021 027 035	00101 00101
112 113 114 116 117 119 20	- 168 - 168 - 168 - 196 - 179 - 2012 - 113	937 - 1439 - 1532 - 1532 - 1544 - 1033	.0116 0316 0316 0128 018 090	.028 .0282 -0232 -0331 -0316 -041	0111113062	0050 00103 00133	006 -0002 -0002 -0010 -0016 -0016 -0014	007 -001 -002 -002 -002 -002 -0007 -0041	000000000000000000000000000000000000000	010 0110 0110 0110 0110 0110 0010 0010	0110 0110 0110 0110 0122 0122 0122 0122	010 010 010 010 010 010 010 010 010 010
2007 45 67 89 0		.0 U B . 023 - 152 - 137 - 184 - 1923 - 141 - 021	93547 00377 00318 00318 00318 00318	0125 025 0331 04431 01132 013	010 1014 0316 0117 0110 0124	0.0332935264	- 000 - 000	006 .003 .003 037 037 028 .012 012	010 022 043 0020 041 007	1001444 000441445 000669448	.010 .0577 .0577 0073 .00314 00545	007643223 1113155553 0000000000
31 323 345 356 37 39 49	.085 .123 .039 .181 .497 .038 .079 -116 071	28524259 1040457418	39588591, 000000000000000000000000000000000000		0300054223 03000561223	0 00 64 0 052 0 052 0 053 0 051 0 051	.00012869465	004 004 004 0018 0018 0019	4124696240	02153 -01100 -01735 -01100 -0138	021 021 021 001 001 001 001 001 001 001	.0101 .00744 .00746 .01577 .00150
FRIC	048	•071	• նսն	009	021	.004	.035	045	014	.008	.051	• 0 3 4

```
. 451
                                                   . 263
  40
                                                                                                                                                                                                                                                                    - 0125
- 011
- 031
- 008
- 012
                                                                                                                                                                                                                                                                                                      - 0 21

- 0 10

- 0 23

- 0 0 2

- 0 0 2

- 0 0 2

- 0 0 6
                                                                                                                                                                                                                                                                                                                                         -016
-010
-016
-016
-015
                                                                                                                                                                                                                                                                                                                                                                            -.019
-.034
-.032
-.139
-.191
-.062
                                                                                                                                                                                                                                 162
-174
-114
-067
-063
-042
-070
                                                                                                                    - 136
- 136
- 081
- 040
- 018
- 014
- 014
                                                                                                                                                        -.03
-.071
-.024
-.019
-.019
-.026
                                                                                      14.4005713
                                                                                                                                                                                            - 0133
34567895
                                                                                                                                                                                                                                                                                                                                                                                                                                                       .072
.014
.014
.010
                                                                                 - 1237
- 1237
- 1237
- 1335
                                                                                                                                                                                                                                                                 - 003
- 013
- 007
- 002
- 010
- 005
- 025
                                                                                                                                                                                                                                                                                                                                                                             .022
.007
.012
-.026
-.036
-.019
-.065
                                                                                                                                                                                                                                                                                                                                                                                                               -118
-132
-000
-017
-050
-029
                                                                                                                                                                                                                                                                                                                                                                                                                                                    2050
0050
0010
0010
0010
                                                                                                                                                                                                                                     .015
-.002
-.006
.016
.016
.011
                                                                                                                                                                                                                                                                                                                                         -.035
.036
.039
-.041
-.035
-.036
                                               . 037
. 136
. 067
- . 130
- . 061
- . 610
- . 652
                                                                                                                    -. 038
-. 081
-. 015
-. 064
. 011
. 021
. 035
                                                                                                                                                         -.003
.0016
.0119
-.079
-.024
                                                                                                                                                                                              .007
-031
.002
.210
-.008
-.026
-.003
  555555555
```

SUMMARY OF FIT	STATISTICS FOR IT	ENS		•
AVEDU 15 5 3 3 4 5 6 7 8 9 9 11 123 124 5 166 17 1 199 119 119 119 119 119 119 119 11		RCCT MEAN SIDUAL	WEIGHTED AVERAGE RESIDUAL .001 .002 .001 .001 .004 .005 .005 .003 .003 .003 .001 .0002	HEIGHTED ABSOLUTE RESIDUAL .008 .006 .012 .012 .008 .024 .019 .040 .011 .011 .011 .011 .011 .011 .011
	911452 11452 11733567 11732 11	0118 0118 01334 01334 01819 01	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0019 0019 0024 0027 0015 0017 0017 0017 0014 00443

		•		• • • -	• • • •
389 411 412	035 035 035 035	0 25 0 29 0 2 A 0 2 A	. 9 40 . 9 41 . 9 45 . 9 75	- 0 () - 0 () - 0 () - 0 ()	014 019 023
43 44 , 45 , 46	.02 052 046	• 934 • 969 • 959 • 26	.055 .070 .057	.002 .001 003 008	.015 .017 .040 .039
47 48 49 	- 0 1 3 - 0 1 8 - 0 1 5	.04/ .039 .025	.057 .062 .029	• 061 • 062 • 063	016 018 019
51° 52 53 54 55	034 -015 027 035	.038 .054 .013 .041 .J2(• 07 8 • 07 2 • 0 20 • 0 52 • 623	060 .011 .000 062	.026 .026 .006
56 57 58	0.0 0.0 0.0 0.0	0 2 5 0 2 1 0 2 1	.023 .024 .024	003 .000 062 061	.015 .020 .019 .019
AVERAGES	. 00)	.033	.046	. 600	.019

SUMMARY OF FIT STATISTICS FOR APILITY LEVELS ABILITY LEVEL (HID-POINTS)

FIT STATISTIC AVERACE RESIDUAL	-2.75 .006	-2.25 .005	-1.75 .001	-1.25 .000	.75 .001	25 .076	7 002	.75 001	1.25 008	1.75 000	11 2.25 004	12 2.75 000
AVERAGE ABSOLUTE RESIDUAL		.056	.034	• 6 2 2	.016	.017	•012	.014	У10».	.025	.039	.039
ROOT MEAN SQUARE RESIDUAL	•129	. 075	. 444	.028	• 0 20	.025	.917	.019	.021	.035	.060	•059
·					٠			4				a •

OVERALL AVERAGES AVERAGE RESIDUAL= .000 AVERAGE ABSOLUTE RESIDUAL= .033 ROCT MEAN SQUARE RESIDUAL= .044

234

STANDARCIZEC RESIDUALS- 3

PARAMETER MCCEL

1	2 3	4 5	ABILITY	LEVEL	10	11 12
MID-POINT -2.750	-2.250 -1.750	-1.2507	0250 .250	.750 1.25	0 1.750	2.250 2.750
NO . OF EXAPINEES 24	50 114	194 318	440 509	368 248	98	32 11
11 EH . 72 3	696 .262 1.197332 -1.650454 1.230222 .310 .266 641 .846 1.831 1.076 .925 1.633 1.228 1.012	226	235 .442 316 .948 355912 259 .171 774 1.216 -741 .679 -1.588 -2.423	.349 -1.608 .880 -308 .207582 .527840 -225697 225697 2.664326 -1.713 .066	953 -953 5714 141 2-120	-1.208 .333 .569 .333 .569 -2.697 .569 -2.697 -1.048 .471 1.375 1.259 1.375 1.259 1.569 .333
13 -1.84.5 14 -1.812 15 \-2.141	521 - 538 - 496 - 225 - 496 - 225 - 751 - 743 - 1 873 - 215 - 976 - 554 - 843 - 2 745 - 104	1.365 1.155 2.312 47 1.361 1.298 1.298 1.298 1.298 1.298 1.298 1.379 83 83 83 83 83 83 83 83	1.28c405 367 -1.776 1.669 -1.671 2.227 -2.172 145 1.122	1.404 945 -880 -945 -356 1.583 -2.825 -1.755 -2.829 -1.755 -2.628 -1.956 -2.628 -1.956	95333 95533 995533 	5569 5669 5669 5669 5669 5669 5669 5669 5669 5669 5669 5669
26 2.246	. ()2 .378 1.221 -848 -381 -725 971 -1.809 -2.317 -2.743 -158 -1.93 158 -793 1522 1.76 -1.044 1.584 1.847		426 .058 1.576295 1.625 1.9549 1.625934 1.626934 1.627936 1.627936 1.627936 1.627936	- 4 51 - 1 . 21 4 - 4 06 - 54 0 - 3 27 - 1 . 3 50 - 1 . 6 44 - 1 03 - 1 . 6 87 - 1 6 0 - 5 2 23 - 1 . 4 6 0 - 6 6 7 - 1 2 0 - 6 9 2 - 7 4 1	024 -1.023 536 1.715 -1.296	.569 .333 1.387 .435 1.141 .645 1.582 .786 1.582 .786 631 -1.046 199527
31 1.168 32 1.475 33 2.128 34 2.128 35 4.455 37 .135 38 -1.779 39727 41 -1.798	2.159 .072 1.122 .741 .922 1.035 .039251 3.715 .614 931 .649 1.607264 .805 -1.351 589 -1.166 361 -1.840	646 394 137 889 168 1 .383 2 .68 1 .102 78	-331 189 -360 -052 -2286 -2413 -900 -858 305 -410 -147 -1373 11390 -295	540087 609087 639433 1.217277 896277 896330 -1.394163	1.173 301 2.0953 814 953 -1.967	-1.205 -2.697 1.050 -333 1.683 -331 1.313 -1.145 1.3569 -333 -369 -333

```
1.049
-776
-.223
-.8055
                                                                                                        - 425
- 596
                                      2.129
                                                                                                                       1.858
-.790
1.312
                                                       - 613
- 489
- 572
                     -1.098
3.589
1.937
-2.249
                                                                                                                                                                    -1.602
-3.625
-1.738
-1.738
2.477
-.767
-.860
                                                                                                                                       1.547
-.564
-.946
-.159
                                                                     25
- 173
-2 571
                                                                                        - .5 6 3
1 . 2 6 7
                                                                                                        2.7 61
3.120
-.356
                                                    -3. ¢31
-2. 43 û
1. 53 9
                                    -2.419
                                                                                                                          .503
                                                                                                                                                                                                         356
493
121
333
                     -1.759
-1.580
-1.612
-1.024
-1.086
                                       1.795
                                                                     -1.158
-1.158
-1.156
-1.1960
                                                                                                                       1.496
                                                                                     -1.433
1.324
-1.854
                                                                                                                                                                                    -1.964
-2.263
-2.026
                                                                                                                        -.580
-.543
                                                                                                                                       434
                                                                                                        -.663
                                                     2.196
2.196
-1.672
                                       -.115
                                                                                                          .408
.058
.137
                                       1 . 99 3
. 01 3
. 78 2
                                                                                                                                       1.444
                                                                                        4 9 g
   49
53
                                                                                                                                                                       .426
.147
.556
1.647
                                                                                                                                                                                     1.351
-1.741
.007
-.811
                                                                                                        272
753
U02
2.100
-369
-984
-705
1.239
                                                                                                                      -.162
-.587
-.451
.543
.262
1.334
                                                                                                                                                     -1.249
1.232
-572
-2.939
                                                                                                                                                                                                     -1.545
                                                                                                                                         .2 ¢6
                                    · 20 3
1 • 70 5
- 33 7
- 78 2
- 78 2
- 71 1
                                                     -. 253
-1.735
-. 323
-1.377
                     .532
1.352
.662
-1.652
-.512
-.759
                                                                        -.126
083
                                                                                        361
1.164
098
                                                                                                                                                                                                       14933344
135544
15554
   51
52
53
                                                                                                                                      - 137
- 372
- 616
- 563
- 422
- 1.008
                                                                     -1.720
2.110
-.679
                                                                                     -1.026
-260
-979
                                                                                                                                                     -1.161
-.206
-1.348
.133
                                                                                                                                                                        -.911
                                                                                                                                                                                      -1.079
                                                                                                                                                                     - 942
- 2.151
- 810
                                                                                                                                                                                        .018
-.914
    55
                                                        .487
1.751
1114
    56
57
                                                                                                                                                                                          . 639
                                        - . 188
                        . 665
             ANALYSIS OF STANDARDIZED RESIDUALS
(ABSOLLTE VALUES)
AL NJMBER, PERCENT CUMULATIVE
INTERVAL
                                                                    FERCENT
                                                                       65.66
                           457
                                           65.66
     6 TO 1
                                                                       91.67
                                           26.01
                           1 81
     1 TO 2
     ; TO 3<sub>87</sub>
                              52
                                                                     163.00
                                                .86
                               ó
    BEYOND 3
   SUMMARY OF FIT STATISTICS FOR ITEMS
                                                                                                                                                             MEIGHTED ABSOLUTE
AVERAGE RESIDUAL
.584
.302
                                                                                                                    WEIGHTED AVERAGE
                                                                              RCOT MEAN
SQUARE RESIDUAL
.779
.512
                                     AVERAGE ABSCLUTE
              AVERAGE
RESIDUAL
                                                                                                                                RESIDUAL
                                               642
                  - 053
- 275
- 056
                                                                                                                                     .067
                                                                                   1.018
                                                914
853
                                                                                                                                       038
                                                                                   1.062
                                                 . 594
                   -.174
                                              9587
1.472
1.725
                   - (55
123
635
                                                                                   1.553
                     .11:
                                                                                     . 705
                      .273
                                                                                                                                                                            1.102
     10
                                               953
                                                                                      .950
                                                                                                                                                                            1 . 225
                      . 455
                                                                                   1.486
                     . 135
     123
14
15
16
17
                                                                                                                                      . 284
                                                                                   1.007
                    178
213
- 10?
- 23
- 154
                                                 . 781
                                                                                                                                                                              . 995
```

1.201 1.597

.943 .922 1.432 .977

- 265 - 060

1.790

1.186

-30-

SUMMARY OF FIT STATISTICS FOR ABILITY LEVELS
ABILITY LEVEL (MID-PCINTS)

.669

FIT STATISTIC AVERAGE RESIDUAL	-2.75 039	-2.25 •079	-1.75 -049	-1.25 065	75 .066	25 .270	7 • 25 • • 1 52	8 085	1.25 344	10 1.75 .099	2.25 .052	12 2.75 .045
A NERAGE ARSOLUTE PESIDUAL	1.278	1.022	.961	.844	.758	•922	.790	.809	.947	.964	. 691	. 674
RCOI MEAN SOUARE RESIDUAL	1.537	1.287	1.220	1.020	.923	1 -184	•99ü	1.059	1.116	1.166	1.051	. 940

OVERALL AVERAGES AVERAGE RESIDUAL= -.002 AVERAGE ABSOLUTE RESIDUAL= .905 RCCT MEAN SQUARE RESIDUAL= 1.125

ERIC

338